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ABSTRACT ;%%0"]

A new approach to the kinetic theory of plasmas 1is
presented. This approach is based upon the hierarchy of
equations obtained from the Liouville equation by integration

over position coordinates. A generalization of the Mayer
cluster expansion is used to rewrite the distribution function
in terms of a set of generalized correlation functions. The
resulting hierarchy of equations share with the Liouville
equation the characteristic that they are linear, and each may
be solved by a straightforward operator method. The final
reduction in description is accomnlished by integrating the
solution over the unwanted velcecity coordinates. Three
problems are studied.: First, the initial reaction of the
plasma to the presence of a small amplitude disturbance is
shown to agree with the predictions of Landau. Second, a
general kinetic (master) equation is derived for a spatially-
homogeneous, stable plasma in the limit that the plasma
parameter is small but not zero. This general equation, first
derived by McCune, 1s shown explicitly to reduce, after inte-
gration over N-1 velocities, to the kinetic equation of
Balescu and Lenard. Finally, the behavior of an unstable
collisionless plasma is considered. The hierarchy of
equations may be solved, in the limit that the plasma para-
meter approaches zero, to obtain an explicit solution for

the distribution function which includes all wave-coupling
effects. The solution is shown to reduce to a form which
agrees with the results of quasi-linear theory in the limit
that the initial amplitude and growth rate of the disturbance
are small. The application of the method to the problem of

a strongly-unstable plasma is briefly discussed.:
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CHAPTER 1

INTRODUCTION

A charged particle in a fully-ionized plasma interacts
simultaneously with a large number of other particles.
while most of these interactions are weak, the combined
effect can be significant, giving rise to the so-called
"collective" phenomena in plasmas. In addition to the large
number of weak interactions, there are a small number of
strong interactions that produce large deviations in the
trajectory of a particle. The latter interactions give
rise to such phenomena as microscopic density fluctuations
and bremstrahlung emission and absorption in the plasma.
A kinetic theory description of a plasma mus$t include in a
systematic way the effects due to these two extreme types
of interactions between particles. One statistical mech-
anical treatment of a system of N-particles has been for-
mulated by Gibbs.l The particles are viewed classically
as charge and mass localized at a (moving) point in space,
and each is assumed to interact with the N-1 particles through
the laws of Newtonian mechanics. An ensemble of similar,

non-interacting systems is introduced, and each system of




-2 -

the ensemble 18 represented by a point in a 6N-dimensional
phase space. The number of systems is assumed to be so
large that the cloud of points in phase space may be repre-
sented by a distribution function which i3 continuous in
the 6N variables. The time rate of change of the ensemble
function is governed by the Liouville equation, which pre-
scribes that the systems of the ensemble can neither be
created nor destroyed.

Much effort has been directed towards finding a solu-
tion to the Liouville equation. Due to the complexity of
this equation one seeks, at the present time, an approxima-
tion to the solution. The approximations that are in common
use are based upon the possibility of sorting out the
simpler from the more complex (but less likely) interactions.

Practically, one has used either a hierarchy of equa-
tions, the BBAKY>’3'%256 nierarchy, obtained from the
Liouville equations by an integration over position and
velocity coordinates, or a diagram method of one kind or

another7’8

»9 to represent a direct solution of the Liouville
equation. The first approach takes advantage of the obser-
vation that all quantities of interest can be determined
from the reduced functions fg which are obtained from the
ensemble distribution function by an integration over N-S
velocity and position coordinates. The level of description
of the problem is therefore reduced iimediately by integra-

ting the Liouville equation over N-S velocity and position
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coordinates. The result is a system of coupled equations
(the BBGKY hierarchy) in which the equation for the function
7§ has a term which contains 7@;/ and so on. No simpli-
fication has been achieved at this point except through the
explicit use of the symmetry properties of the distribution
functions. The problem has simply been transformed from
that of solving the Liouville equation to that of solving
a system of N coupled equations. In order to obtain a
simplification of the equations it 1s necessary to introduce
some assumptlions which enable one to compute the lower
order functions z{‘ R f; s -.. without knowing the higher
order functions i; , f; s +«+ . These assumptions usually

take the form of a Mayer cluster expansionlo

, as well as

an ordering of the successively higher correlation func-
tions in terms of some small parameter appropriate to the
system. The problem is reduced in this way to that of
solving the first two or three equations of the hierarchy.
For a plasma the appropriate small parameter is the inverse
of the number of particles in a Debye sphere -- often called
the plasma parameter. In the limit that the plasma para-
meter approaches zero the correlations are assumed to
vanish altogether and the entire BBGKY system of equations
is reduced to its lowest member, the non-linear Vlasov
equation. The neglect of correlations in this 1limit is
equivalent to neglecting interparticle collisions in an

ordinary gas.



An alternative approach (the diagram method) is taken
by Prigogine, Balescu and Brout.7’8’9 A direct solution of
the Liouville is obtained first and the reduction of the
level of description comes only after the solution has been
obtained. The advantage of formulating the problem in this
manner i1s that the Liouville equation is linear, and the
investigator has at his disposal the well-established tech-
niques for solving linear partial differential equations.
The solution is expressed in the form of an infinite series
of increasingly complicated terms. Diagrammatic methods are
required to simplify the notational problem. Finally, the
dominant contribution to each term of the solution is deter-
mined on the basis of certain criteria which serve to
define the problem.

A somewhat different approach to the kinetic theory
of a plasma is presented in the following Chapters. The
starting point is the hierarchy of equations obtained from
the Liouville equation by an integration over the position
coordinates only. This system of equations, derived by
Kigginsll and HZcCunel2 has been used by McCune to derive
the master equation for plasmas. The distribution functions
in the hierarchy depend upon all N momentum and ¥ position
coordinates. The functions are written in terms of gener-

alized correlation functions, a procedure which can be

viewed as a generalization of the Mayer cluster expansion.
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A new system of equations is obtained for the correlation
functions. Each equation of this hlerarchy 1is coupled to
four other equations. However, all are linear. Even wave
coupling effects appear in a linear way in this formulation.
While the equations are to be solved at this level of
description, considerable simplification of the solution is
achleved subsequently by integrating the solutions over the
"unwanted" velocity coordinates.

The above approach has two characteristic features.
First, as mentioned above, the equations of the hierarchy
are coupled. For the general case where the plasma para-
meter € 1s small (but not zero) it is necessary to include
arguments similar to those used with the BBGKY hierarchy in
order to truncate the system of equations and to reduce the
problem to the solution of the two or three lowest members.
Second, the basic equations are linear and may be solved by
simple operator methods. To i1llustrate this advantage we
shall consider in Chapters 5 - 8 ~ a plasma in the
collisionless 1limit ( & — 0) where the BBGKY hierarchy,
as already mentioned, reduces to the non-linear Vlasov
equation (under the assumed Mayer cluster expansion).

While the approach described above has much of the gen-
erality of the approach of Prigogine, et. al., it has two
distinct advantages over the latter. First, the number of
terms is not so large as to require the introduction of

diagrams. Second, the choice of the dominant terms in the




solution can here be made on clear physical grounds whereas
the basls for the choice of the dominant diagrams of
Prigogine, et.al., 1s often somewhat obscure.

Before proceeding, let us briefly discuss an alter-
native view of plasma statistical mechanics which could be
adopted, based upon the "exact distribution function" for
a gilven system of N point particles.* The evolution in time
of the exact distribution function is governed by the Vliasov
eqnation.l3 In general, the distribution must be treated as

a random function of tinelu’ls

, and the Vlasov equation
must be averaged over an ensemble of systems. The result is
a hierarchy of equations in which each equation 1s coupled
to the one which follows it. This hierarchy is equivalent
to the BBGKY hierarchy. Dupreels’17 has shown that a con-
sistent ordering of the terms in the system of equations 1s
possible, and that the (small) plasma parameter &€ can be

used to prescribe a systematic perturbation procedure for

obtaining a solution valid to any order.

*The "exact distribution function" 1s for the classical

plasma discussed here a sum of N delta functions

NI(X,¢) ZS/X X )

where X;(t) is the trajectory of the ; th particle in

velocity and position space.
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While the approach based upon the Liouville equation
differs somewhat in point of view and methodology from the
above approach based upon the Viasov equation, the results
of both are in complete agreement. We adopt henceforward
the first point of view and seek approximate solutions to
the Liouville equation by an extension of the methods of
McCune.

Three problems are to be studied. First, the initial
value problem of a small amplitude disturbance in a collision-
less plasma is considered. The equations of the hierarchy
are found to reduce to particularly simple forms, and each
may be sclved independently of the others. The solution for
the single-particle distribution function agrees, to within
terms that are small in the 1imit that the number of particles
becomes large, with that obtained by Landau to the linearized
Vliasov equation.18 The solution to the first problem assumes
a central position in the theory. The methods developed
are illustrative of the methods employed in later chapters
to solve more complex problems. Also the first problem
serves as a simple introduction to the more complicated
general operators which appear at later stages.

Tﬁe second problem is that of studying for a stable,
spatially homogeneous plasma the general kinetic (or master)
equation derived by McCune. We show in Chapter 4" that
when the level of description 1s reduced by an integration

over N-1 velocity coordinates McCune's kinetic equation
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becomes identical with that obtained by Balescul? and
Lenard?®. Pinally, the "bump-in-tail" instability>l in a
collisionless plasma 18 discussed. The equations are again
simplified in the limit that the plasma parameter approaches
zero. Each member is coupled only to the two which come
directly after it in the hierarchy. Since the equations are
linear, each can be solved by a generalization of the
operator method introduced by Dupree.22 The solutions are
then combined to write the complete solution for the single-
particle distribution function in terms of the initial condi-
tions on the problem. This approach eliminates the need for
the adiabatic hypothesis or multiple time scales usually
required for this type of problem. The solution is simplified
by assuming the initial amplitude and growth rate of the
unstable disturbance to be small and the time not too large.
The results are found to agree for an "intermediate" period
of time with those obtained from quasi-linear theory.23’2h

A simple method 1s proposed to calculate the growth and
self-limiting of a weakly-unstable disturbance. The results
of the approximate calculation are found to compare favorably

with the numerical calculation of Drummond and Pines.23



CHAPTER 2

HIERARCHY OF EQUATIONS FOR THE GENERALIZED
CORRELATION FUNCTIONS

We consider an ensemble of systems of charged particles.
In the interests of simplicity we limit ourselves to the
case of a single species of charged particles in a neutral-
izing background of immobile particles. There are to be N
such particles, each of which has associated with it a
position coordinate 32,- and a momentum coordinate 7—'3 R
The gas 1s assumed to be "classical", that is quantum mech-
anical and relativistic effects may be neglected. The
theory is thus not applicable to the very high temperature
plasmas, such as thermonuclear plasmas, in which radiation
from relativistic particles constitutes an important part
of the energy of the system. It can, however, be applied to
the relatively cool plasmas, such as the solar wind where
T ~ 1050k, |

The distribution of systems within the ensemble is de-
scribed by /TAQ?ﬁMHt) which is a function of N (vector)

position coordinates and N (vector) momentum coordinates.

The particles are assumed to be indistinguishable so that
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’

of indices. All quantities are non-dimensionalized by intro-

AN
(INHE) 15 symmetric to the interchange of any pair

ducing a length which characterizes the range of interaction
between particles and a frequency which characterizes the
time scale on which microscopic changes take place. These
plasma quantities are assumed to be the Debye length /%
and the plasma frequency ld/o .

The special case of no external force fields is considered.
Furthermore, since we are interested in those properties of
the plasma which are independent of the size of the container,
the walls are removed to infinity in such a way that the
mean number density of particles /1 = —9-{ is a constant. If
__‘_’_;113 << j » edge effects may be neglected.

The reduced function / M{Iju}lt) is obtained from the
ensemble distribution function by an mfegration over N-

spatial variables.

=~ N-V

£ tiote) = f (%) F™tmip (2-1)

AB
We adopt the notation that / (/2H?) 15 a function of
A velocity and B position coordinates. The indices in the
set { B} are associated with both position and velocity coor-
dinates; those in the set { A-B} with velocity coordinates
only. While the ensemble function f MA(/{AIHZ‘) is
symmetrie to an interchange of any two indices, the reduced
functions F N'}j{u}lt) are symmetric only to the interchange
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of indices within the sets {1V} and {N¥-Y} . It 1s not
symmetric to an interchange of indices between these two

sets.

w2
The following equation for the function / (Ju}7) has

11 12

been derived by Higgins and McCune. It i1is obtained

from the Liouville equation by an integration over N-V
spatial coordinates (see eq. (10) of ref. (12)).

AL
OF (fvht)

NY
A HF tone) - € ST F " (oie) =

J

oy Ivit . 3 o o
= E{ZZ 3\7‘:,5’1’9‘)/’:— ({2} 1¢) (2-2)

{A/zj ,_‘de—s' 534;_ M?)fz .
+2€ /1-", —V—"’Ifj‘)F (12351¢)

where )
A Eigj%ef?%
” {vl DUy v}
o 5E i3t e
£ = (%7"/2»53)_I

The non-dimensional potential 5é7' » assumed to be a spheri-
cally-symmetric function of the distance between the points

—n

X; and %; » has been measured in units of f%&% .

y)
The symmetry of the reduced functions 7 /{v}|t) and
)
the condition that F '(fv})Z) vanish at the boundaries of
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the phase space have been used in the derivation of {2-2).
Equation (2-2) is the 1)éé member of a hierarchy of equa-
tions in which each 1s coupled to two higher equations (in
contrast to the BBGKY hierarchy where each member is coupled
to only one higher equation). "

The generalized correlation functions 7[ "‘;{v}lt) are
defined in the following way.

A

F o =Fre

Fl%t) = F MD/t) + f A;/,/f)

F'i/a:zlt) S */?/llf) + //Aj?/’f) * /%i”f) (24)
Faaie) = 7% v fime) « 518 + f1312) + f tratt)

. £ %;t) ~F 7323#) +/ ;/4;.3/2*)

-

The relations (2-4) may be considered a generalization of

10

the Mayer cluster expansion. To show the relation to the

N
Mayer cluster expansion, the expression (2-4) for fT'QUQ]t)

1s integrated over the N-2 "spare" velocity coordinates.
22 20 27 37 22
F//:?/t) =F (#) *][//lz‘) + //Q/z‘) f///Qlt) (2-5)

The Mayer cluster expansion for the two-particle distribution
function is

22 4/ 4!
F(r21t) = F1t) F (alz) + jﬂa/z‘) (2-6)
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4
where 7‘— (

:,'f) is the single- partic;e f‘imeticn and yr’/
the correlation function. We write / (/lt) as the sum
of a spatially-homogeneous part 7{ (/1) and a spatially-
inhomogeneous part 7/0 (7l¢) and substitute into (2-6)

22
Frnalt) = fue) fraie) +F o) frae) + £ e) fraie)

(2-7)
L it) Fl21E) + gli2it)
When the result (2-7) is compared with (2-5) we find
£l01e) = fone) Frat)
;[ /:2/:‘) =£ont) £raz) (2-8)

Lty = £it) fraie) « 9(alt)

2,2
The function 7[ (72/¢) thus contains the effects of

correlations between the particles 1 and 2. If at any time
7["?'2(/2/5-) = //’(/,/zc) fll/{:ZIz‘) then the particles
1l and 2 are statistically independent.

A hierarchy of equations for the generalized correlation
functions 1is obtained by substituting the expressions (2-4)
into the hierarchy (2-2). The equation for TMOKZ") 1s
simplified by noting that the interaction potential d,--
spherically symmetric. Therefore, the only part of TM(?‘/'It)

-

that remains after the integrations over X; and 33 is
N,
# ’:}g'/t) and we find
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o { N}
ar”m

f 5% 55 _275/)7[(5//2‘) (2-9)

The second equation of the hierarchy (2-2), rewritten in
terms of the generalized correlations (2-4), may be simpli-
fied by using (2-9) and the spherical symmetry of U-. with

J

the following result.

97[ (/li')

7{/( t) - EZ[———JIQJ/QM) =
= &3 5T 5zt G

—Z'f'— 1 Q{/IQ)f/Jlt)

b/—-2
;f/ frﬁdz ‘/I’:/}/”./’ZL)

The generalized single-particle function ff//t) is related
A2 ~3
by (2-10) to the two higher functions f (7:1¢) and f[,y/t)
If the relations (2~9) and (2-10) are used to eliminate

(2-10)

some terms from the third equation of the hierarchy, we find
N2
the following equation for A7 z)

af(’q’t) H /(/alz‘) c_c f A (I(y)ﬁg,lthflg)fglt) ESf(/alt)—
= E{\DZF&‘)DJ-QZf(/[ﬁ —f—g—-i('_z_(/a)f‘(/lh‘) * 32/ ;QIZ‘)
j ”deI//a)f/mt) / 5, og)/?/a/t) / 5 '{}%‘flln)f//mt) (2-11)

J’ gy e Tep)f e 12)
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/ 30"‘, A d /“dx A3
-2 | B i) e ) / 2% Bl Ty ) git)

n-2}
’K?d—; 030,{ MI/
f?{/f = 228 715) faiit)

This result may be simplified somewhat if we consider the
order of magnitude of the term

gf*—’l'//g)/f/lz‘) (2-12)

The range of the interaction potential ar,/" is assumed to
be of the order of the Debye length so that lé,- is very
small for [¥-X;| > 1  (the positiom coordinate has been
non-dimensionalized with respect to the Debye length).

Thus, we may characterize the order of magnitude of the term

(2-12) in the following way

3 N,/
2 ; -
£ & (zirf biel), (21
where { Il/a)/ {/It) is the average value of the inte-

grand of (2-12) 1nside a sphere with a radius of one Debye
length centered at the point _7?2 . We caxi write, from the
definition (2-3) of & , EGJ%= %ﬂ‘/\/ . We see from (2-13)
that the term (2-12) becomes vanishingly small in the limit
N &> oo and may therefore be dropped from the equation

(2711). There are other terms of the form
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(15 ol
3 ZJ *—iI(J)f (/:g) (2-14)
on the right-hand side of (2-11). Each term of the sum
(2-14) 1s, by the arguments presented above, of order ( '/N) .
However, since there are N such terms their combined effect

N3

is of order (I (y‘)/p (/.;c)/'))ﬂv » and they cannot be discarded
)

from equation (2-11). The equation for 7[" (/2) becomes

‘)’p (’J"’ ¥4 fm[trf J %33”3' (Zo)f gjm +T)f (’th)) e SF (12l
= £{&Q(F(?3 a "‘t)f/[NQv) Zf‘"—“ I(J)"I(Q/)]F(A’/:zg/"f)

Z

J'.?
Z ZJ X ”;df" T6j) f M(y/a;*//t)}

o/x

u‘t

I(g,)f (12/1t)

(2-15)

where terms of (O (—5—) have been dropped. We find from
(2-15) that the two-particle function is coupled to four other
functions, the two ( F “{¢), 7[’%’}1‘)) that come just before it in
the hierarchy and the two ( 7[7 7'33/;([1‘), f 7:1;/Jmlt)) that come just
after.

If these same arguments are used to obtain an equation

N3
for 7[‘ (7123 | ¢) we find (the error is now of @(7‘3‘) )
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‘;g”;j'ﬁi—/{f (123it) - € ZJ 1“«/(19)%/93 1t) *17'2’/)1[ (’J’f)

+I/g)/pg-/t)) - e 5F fies) t)= S{I ) f it e T //é/t)

T M2 Nz
Tiaa)fie) + (T03)+T; ) rit) HI02)+Tw@3)f (31t

IN-3}
ZJ gy g i sl e

//v-.? = N3}
24 I a’X/ -Jifl]—// )7[//:25/2‘) 2/ I/:J )f//gg/ I2)

I s}
Cjﬁi{/I{a’ )f{/a;?/lz‘ﬁzx dx‘ 59 va//][/-?{i/lt}

st

We see that the three-particle function is coupled to four
other functions. As with the generalized two—particle
function, these functions are the two ( f(elt) 7[[, }z‘) )
which come Jjust before and the two ( ff‘/z,,/t} f 7, j,,gg,z‘) )
which come Just after 7[’ (/93]1-) in the hilerarchy. We find
the same result in the general case. The 7)4 equation may
be written in the following formal way (terms of order (v/A/ )

have been discarded)
v L NY-Z

(5% - ES”)va: ER(F f )
4 Zzu{f,u,vfl) . j {7[A/Jv+z)

The hierarchy of equations, of which (2-17) is the 1)7—{

(2-17)

member, has several important properties. First, the equations
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are quite general in that no special assumptions have been
made about correlations in the plasma. Second, the equations
are linear. The introduction of the generalized correlations
(2-4) was chosen in such a way that the resulting hierarchy
would retain the linear nature of the Liouville equation.
Third, the differential and integral operators in (2-17)

are independent of time, a property which, as we will see,
enables one to solve the problem of a weakly unstable plasma
without the use of an adiabatic hypothesis or multiple time

scales. Finally, we shall see in the next Chapter that the
/

— o~ N/ /
operator V= -2 7%% in the equation for 7[ 7/1t) (7%%
1
and 7? are related by a Fourier transform in the spatial
variable X, ) 1is self-adjoint.
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CHAPTER 3

SHORT-TIME BEHAVIOR OF A SMALL-AMPLITUDE DISTURBANCE

3.1 Introduction

We consider the time-response of a small-amplitude elec-
trostatic disturbance in a spatially-uniform collisionless
plasma (there is no magnetic field). With the assumption
that the amplitude of the disturbance is small, the equations
of the hierarchy can be decoupled (in the limit & ->O )
and each equation solved independently of the others. The
equation for the generalized single-particle function may be
written in matrix notation. We show that the operator
V = 'iZ%- in the equation for gz;) is self-adjoint,
which implies that the eigenvalues of the operator are real
and the solution remains bounded in time. Thus, the theory
as formulated has a mathematically stable nature even when
the initial conditions are such that the amplitude of the
disturbance initially begins to grow.

However, as we shall see, the self-adjolint properties
of the operator matrix represent information which is
inaccessible to the theory when the level of description is

reduced by an integration over the N-1 extra velocity
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coordinates. We show that if terms of (766) are neglected
the solution for the single-particle function j;cqf)

agrees for "short” times with that obtained by Landau, and

it can therefore represent "stable" or "unstable" behavior

in the sense of the usual linearized theory of the Vliasov
equation. As 18 well known, the Landau solution of the
initial value problem exhibits unstable behavior for certain
plasma equilibria. The amplitude of the disturbance, accord-
ing to the linearized theory, continues to grow indefinitely.
In order to reconcile the possibility of the continued growth

12 self-adjoint properties

of ;f‘;mt) with the established
of the operator matrix ][ we show that the discarded terms
(Tof O()fr) ) , which add little to the behavior of

the plasma for times observable in the laboratory, contribute -
in an important way to the mathematical properties of the
matrix.

The solution for the generalized single-particle function
may be rewritten by introducing the operator 4§7ﬂ4t) which
relates the function é“f/}t) to its initial value. The
usefulness of the Aé?ﬁdf) operators becomes evident when
we show that the solution for the 7 -particle function may
be written as a product of U éﬁ;(Vlf) operators acting
on an appropriate initial value function. The integration
over the N-U extra velocity coordinates reduces the solution
to a product of the single-particle propagators ?QIVIt) ’

22

first discussed by Dupree. The methods used to obtain the
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forms of the operators &? {7It) ana 7,(-'?(/lt) illustrate
the general procedure employed in later chapters to solve
more complex forms of the equations of the hierarchy, thus
yielding solutions valid for times longer than those treated
in the present chapter.

3.2 Short-Time Behavior of the Single-Particle Function,

L)

The hierarchy of equations (2-17) for the generalized

correlation functions may be simplified if the amplitude of
the disturbance is assumed to be small. A parameter O
associated with the amplitude of the initial disturbance is
used to order each term of the hierarchy. 7-_”’0#) 1s
considered to be of Off) . For a small initial disturbance
of the homogeneous state the function 7[ M{I/[t) is taken
of order (5 since it contains the spatial coordinates of a
single particle, 7[' ('/g]t) is of O(O'Q) and so on. With
the above ordering procedure the terms on the left-hand side
of equation (2-10) for f(/]t) are of O(G‘), and the terms
on the right, which involve the functions 7[‘//;;%) and
f(thf) , are of 0(6‘ )and 0{6“ ) ,» respectively. The
assumption that 6 1is very small is used to justify neglect-
ing the terms from the right-hand side of (2-10) and to
reduce the equation for f M(l/}z‘) to the following homo-

geneous form.
N/

ofut) o', v (Bl
LD 4 3 iy -g_gf—v—JIw[g:t) =0 (3.2-1)
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NI
The Fourler transform of the function f (/1)
N/ R ,;,?.;" ",
],-;[‘(/Iz‘) =|dx € (r1t) (3.2-2)

is introduced to further simplify the equation for the single
particle function. We find, from (3.2-1)

NI
’ . N NI
éﬁ_;alt) .—:A ”’, -—l v . _é_ —é I. = e &
5 +2/(/l€}7£(/lz‘) N/(W/f).é;(‘;@ aﬂ})églt) 0 (3.2-3)
where the relation ( ,{/ YrN bhas been usea to elimi-

nate the parameter £ . The function 47 ¥#(X) 1s the

Fourier transform of the intermolecular potential. For the
) .

Coulomb potential  ¥/k) = %2 - To simplify the writing we

introduce the operators

. - o
D,?/z) = /{}%’)-ﬁ;

Dpty) = R[5 J) 6D

Equation (3.2-3), rewritten in terms of the operators (3.2-4),
becomes

N

éé’%ﬁi)+z'/? ///t) ZD.; g)fg/t)=o (3.2-5)

The mathematical properties of equation (3.2-5) are most

easlly investigated by rewriting it in matrix notation. We
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N,/
Vath')
introduce the N-dimensional column vector 7’- (t)

zgﬁht)

£
e (alt)

;[‘.{t,) = ) (3 -2-6)
Al
é (NIt)

and write the equation for the time rate of change of 7[ (t)

as

;Nm + ff’;) =0 (3.2-T)

The N x N-dimensional operator matrix X has been defined
to be

(3.2-8)

<
i
2~
Y

SO HDen® - ¢ - R

PN

where the elements of the operator _Y are real. The matrix
is antisymmetric ( D/?(/a)= ‘D/?(;u) ).
A
The adjoint \V4 of the operator y is defined by the
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relation25

ﬁdﬁ)ﬁl{f“’» YZEW} "f(dﬂ'})” r'\?f”:fm;} (3.2-9)

where { A ,5} is the N-dimensional inner product of the

vectors ,%: and E (the superscript * denotes the complex

conjugate). The properties of the matrix (3.2-8) can be used
"
to establish that the operator |/ 1is seif-adjoint (V =V ).

It follows that the eigenvalues A ofVm realas, and the
corresponding eigenvectors /) ,\{f) are neutrally stable
ﬁmctions of time (substitute any eigenvector for 7[ (¢+) in
(3.2-7) and use the relation VA =Ah, ). Finally,
solutions of the equation (3.2-7) remain bounded in time.2>

For 1llustrative purposes the eigenvalue problem for
the speclal case N=2 1s investigated in some detail in
Appendix A. The eligenvectors, which form a complete set,
are used to write a solution to equation (3.2-7) (for N=2)
which satisfies arbitrary initial conditions.

However, for large N the stable behavior of f {}[z‘) at

the N-momentum level is essentlially lost to the theory when

the level of description is reduced to a single velocity and

spatial coordinate.
N1
The solution for bg(/lt) may be found in terms of

its initial value by taking a Laplace transform of (3.2-T)
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in time.

7[ (110 jc/a‘ 6—'0 (//z‘)

and rewrite the equation for é_‘: (/,70) as

N N
(oI REIL hp) - & Z D @)f g/,o) : ;f (11¢=0)

We introduce the transformed function (Rep > O)*

(3.2-10)

(3.2-11)

Both sides of (3.2-11) are divided by the quantity (70*(%‘/?/')
and the column vector 7[ (70) s Which 1s the Laplace transform
of the vector 7[ (t) » is introduced to obtain the new

matrix equat 1on .

(1-H)fp

= Stp)

(3.2-12)

j 1s the unit matrix. The operator matrix H and the "source!

matrix S(p) are defined below.

i s Deira)
O /Vlowk‘m.
i Dgl) O .
N 70?-;‘)2‘-/@
He |

L D) Dping) |
N priksg, N p# l?m

L

L]

L
N

.. 4 _Delm)
N

PR
D (aN)
p*iﬁﬂxz

(3.2-13)

*'fhe scalar Laplace transform variable p should not be confused

with the vector momentum 7'3 .



[ £ tit=l \

f‘f‘( /?V/L}“

M
Fe taltee)
Sl = | PR

. {

(3.2-14)

Ml
74 TNt=0) ,/

40ri?nq N

]
The formal solution for 7[‘ /,O) may be written in the follow-
ing way

N, .
L= (1-1)" S
- (_/ . H *./7’&/*‘1_7%%/;/*"~)§(;0)

where the right-hand side of (3.2-15) contains an infinite

(3.2-15)

number of terms.

The solution (3.2-15) relates the Laplace-transformed
function to its initial value. However, the function 7F ?j'[;o),
which involves N different velocity coordinates, contains
more information.than would be required for a particular
problem. Indeed, one could not specify an initial condition
in such detail. A more useful quantity is the single-particle
distribution function é(/)p) obtaineci from 7f;"4/(/170) by an
integration over all velocities except /) . We isolate from
(3.2-15) the first element in the matrix Z? éo} and

integrate over all velocities except /—U:‘ s to obtain the
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following result.

7(‘(/’ ),é(//to) . 2Dr0) fahf (Ilt-o)

70r2/{/1f 7O+2/?/? 704-2/(/1{'2

3/
2Dy j il D) ﬁ(m.o)

2/(/2)' L m]o,zm;, 7o+z/uu- (3.2-16)
2249} 7 Dz(1) f Ji di c/" D) Dz (m) 7[‘ (Ilz‘-o)
PRI 70*-2/(/)/' PR, P K

Terms of @(,V/) have been disregarded in writing (3.2-16). To
be exact, the coefficients of the second, third and fourth
terms on the right-hand side of (3.2-16) should be

A/A_/-_/ ) (N—;)/(g/—.?) ) (N—/)(N/-\;?;)(NJ) (3.2-17)

respectively. The coefficients (3.2-17) all approach unity
in the limit of large N. Furthermore, we have dropped from
the third term of (3.2-16) N-1 terms of (i) and from the
fourth term (3N-5)(N-1) terms of @(N%) . An increasing
number of terms must be discarded from each higher term in
the series solution for 72 (//70) . The omission of
these terms 1s Jjustified in two ways. PFirst, our interest
lies in the determination of the bulk behavior of the plasma,
not in those properties which depend upon the total number
of particles present within the system. The equations of
the hierarchy were derived on the basis that the walls of
the container could be moved to infinity, and the limit of

very large N has been used throughout. The doefficients
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of the terms which are dropped, being inversely proportional
to N, becomes vanishingly small in the limit of very large N.
Second, it can be shown that the correction terms (of C)ﬁﬁ) )
significantly influence the solution only after a time T
which is much longer than the time required by the system to
come to a macroscopic equilibrium. In order to estimate T
we note that each term of the series (3.2-15) can be divided
into two parts, one which contributes to the solution (3.2—16)
and one which represents corrections to the solution. While
the first part dominates the lower terms, the correction part
becomes increasingly important as one goes to higher terms
in the series solution. Far out in the series there is a
term which contains equal contributions from. both parts.
The time at which this term in the series becomes of ((1)
then provides an estimate of T. We show in Appendix B that
T is of the order of ¥YN' plasma periods, a time considered
to be much longer than the time required for the plasma to
come to an equilibrium. Thus, while the solution (3.2-16)
is to be considered an approximation to the exact solution
of (3.2-12) the error introduced in using (3.2-16) is
negligible for all times of interest.

The function . ° 7[' Q‘;ﬂtwo) which appears (after
taking a Fourler transform in the spatial variable i; )
in the second term of the solution (3.2-16) for f;(dfﬂ
contains one velocity variable (‘i§ in this case) which does

not have an associated spatial coordinate. Balescu9 has



shown that the function ][” QJ(}“‘: o) may be written as a
product of two functions; 7[‘ (_¢|¢=0) which depends upon the
velocity /7}2 and the position >_§ , and ¢(/—)Z') which
depends only upon the velocity i/ . To summarize the
argument (for more detalls see sections 2 and 3 of ref. 9)
we note that two particles become statistically independent
if they are separated sufficiently far from one another
(shielding effects within the plasma are assumed to limit
the lnteraction range to a distance on the order of the
Debye length). At large separation distances f Q'I(,FH'-'O)
may therefore be written as a product of two distribution

functions.

1 i
7F(«NZ‘=O) =]p(!lz‘=o) Prdy) (3.2-18)

However, since # W(!} ¢=0) 1s independent of the
position coordinate 5(': and therefore of the distance
between the particles, the product form (3.2-18) must be
valid for all interparticle distances. The result (3.2-18)
is easlly generalized to include a largaer number of particles.
The function 71‘””’”(@}/f) may be written as the product of
the functions ]p'w({u}lt) and /Mo(z'/f) whenever it
is possible to separate the particle i sufficiently far
(more than one Debye length) from all the particles in the
set {U] . It 1s readily seen that the necessary separation
can be achleved only if U<< N .
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The above arguments are used to write 7LR (2)t=c) as
a product of 70 (4lt=0) and V-1 functions 50(/)/)

v}
}[ (Jh‘ o) = f (lt=0) 79?/:) (3.2-19)

‘L

The function (p(/?/") is the spatially-homogeneous part of

f (lll‘ o) st the initial instant of time, and

f../}lt o) f(llt-d The form (3.2-19) for the functions
75 Iz‘-o) is introduced into the solution (3.2-16)

for 7% (1 [70) to obtain

fonp~ B

,Of/
(3.2-20)
ey e) #mr 0)[ , ]
poiki ) fdprLizpoe
where we have defined the quantity
P /?'/u'
9

Balescu” has found the same result by using diagram methods.
The infinite serles of terms on the right-hand side of

(3.2-20) converges only in those regions of the p-plane where

L(/?,7O) < 1 . However, using the relation
) _ o
—— - / - X +* x o s a4 @ (3.2-22)

/- X
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we note that

—ﬁf . fr_m"-o)
o,
7{’/’0) f(/lz‘ =0) ?KWK)Q,U- J,o»«-ur/y' (3.2-23)

SoHi R (priR7}) E(R,p)

represents the analytic continuation of (3.2-20) with

E(Rp) = 7-L (/?:70) (3.2-24)

since it is valid for all values of L(/? ,O) (except, of
course, the (1solated) zeros of £ (& 70) ) and agrees with
the solution (3.2-20) in the regions where L( )4 1
The result (3.2-23) 1s precisely that obtained by Landaul®
from the linearized Vlasov equation.
If the theory of residues 1s used to determine the
inverse Laplace transform of (3.2-23), then the time behavior
é(/lt) is related to the poles of the function 7[./?(/ l}o) .
Two different types of physical behavior are included.
Balescu9 has noted that the contribution of the pole
f = -2'/-(‘ /'2'/7 represents the individual particle behavior
of the plasma; the tendency for a local density excess to be
spread over larger regions of space by the free-streaming
motion of the particles. On the other hand, the poles of
( E (/2" 70))-’ represent the collective behavior of the
plasma. While there may be, in general, an infinite number

of collective poles, most are heavily damped26 and contribute
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little to the long-time behavior of £., (//t) . Landau
has shown that in the 1imit of small X (long wavelength)
the dominant pole (the one furthest to the right in the
p-plane) implies plasma oscillations close to the plasma
frequency which grow or decay at an exponential rate which
depends upon 0 3M)/yy

“w
'y

velocity parallel to K and

, where U 1s the component of

Bru) ffdﬂ_/’: S/u, - %’-’77) pu) (3.2-25)

The amplitude of fhe disturbance grows 1if (a@%u)u.‘ i 1s
positive, decays if it 1s negative. (for WKk4>0 ). “

The growth or decay rate of the above (Landaﬁ) pole 1s
independent of time. If the plasma is unstable then the
disturbance, as predicted by the solution (3.2-23), grows
indefinitely. However, we have noted earlier that the self-
adjoint properties of the operator matrix _:\[ imply that the
solution for Zgw( /1E) is bounded in time. In order to
reconcile the bounded properties of ;‘,;N'/(//z‘) with the
possibility of an infinite growth of 7% (11t) we
consider the operator matrix yi s defined in the following

way -
[« 7 De) #De
, #Dpt) R -+ Deta)

<

(3.2-26)

AT D) Ky |
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The matrix (3.2-26) is obtained from l/: (equ. (3.2-8)) by
dropping a term from each of the off-diagonal elements
(replace :D/?(io[) by Dg(i) ). ¥We observe that the
operator Y' » unlike V » 18 not self-adjoint.

o d

ﬁdﬂ”{f le'f W} #ﬁ"w’v{ Y:fuj me} (3.2-27)

The deletion of the second velocity derivative from the
operator '_7)‘,. {Q‘) has destroyed the self-adjointness of the
operator matrix.
Despite the mathematical difference between the operators
Y and Y, s both predict (in the limit K-> =° ) the same

behavior for the single particle function after a reduction

in the level of description. We consider the matrix equation

9-%7[ +Y'Lf =0 (3.2-28)

[

The initial value problem may be solved by taking a Laplace
transform in time, exactly as was done above. The solution
for the first element in the vector 70 becomes, after
integrating.over all velocities exce;t /17,‘ s 1ldentical to the
solution (3.2-16) for 7f.:. (/;70) . The only difference
between the two solutions is that some terms of O{ ;\/L) which
were discarded in the writing of (3.2-16) do not appear in
the solution (3.2-28). For instance, the term



Y .?‘/
7 0De0) (,» ,a iDen)te (lt=0) (3.2-29)

N iR ) % o+ iR ) (04 iR ;)

has been discarded from the third term of the solution
(3.2-16) for £y (110) . The third term of the solution
of equation (3.2-28) has no similar contribution. The
elements of the matrix ){l which were dropped to obtain EZI
can therefore be assoclated with

(a) properties of the plasma which depend upon N, the

total number of particles present within the system.

(b) events which occur on a time scale much longer than

the time required for the system to come to a
macroscopic equilibrium.
The self-adjoint properties of the operator 1[ represent
information inaccessible to a theory which attempts to
describe the bulk behavior of a system.

Two physical interpretations of the behavior represented
by the dominant collective (Landau) pole of (3.2-23) are
possible. The first i1s based upon the motion of a particle
in the force field of a wave. Jackson27 has discussed the
energy transferred to and from the wave by the "trapping"
of particles in a potential well of the disturbance.

However, Dawson28 has noted that trapping, being a non-linear
process, cannot be the source of Landau damping which comes

from the solution of a linear equation. Dawson has inter-
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preted Landau damping in terms of the energy transferred
between the wave and the particles which have a velocity
near the wave velocity. Particles which travel slightly
faster than the wave are slowed down as they transfer
energy to the wave, and particles which travel slightly
slower than the wave are accelerated as the wave transfers
energy to the particles. The net transfer of energy to the
wave depends upon the relative number of particles travelling
slower and faster than the wave and therefore to the slope
of the distribution function at the wave velocity. An
alternative interpretation of the interaction between a
wave and particles discussed by Pearsonag, is based upon
the absorption and emission of plasma waves by a particle.
A particle in the field of a plasma wave can, in this view,
elther absorb or emit wave energy. A wave is damped 1if

the absorption of all particles exceeds the emission and

1s amplified if the emission exceeds the absorption.
Finally, we note that Landau damping may not be visible at
all. Both Backus3C and DawsonZ® have shown that non-linear
processes may effect the behavior of the disturbance before
Landaw damping can be observed. If the trapping timeqﬁ is
less than the Landau damping time then the terms which were
discarded from the right-hand side of the equations of the
hierarchy (2-17) become important before the Landau part of
the homogeneous solution has an opportunity to dominate the

behavior.
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The essential elements of the physical picture of
Landau damping have been verified in ref. 31 where the
spatial damping of electrostatic waves in an effectively
collisionless plasma was: measured experimentally. The
damping rates were found to agree, to within experimental
error, with the results of Landau. PFurthermore, it was
found that if the plasma contained no particles with velocities
near that of the wave (the high velocity tail of the distri-
bution function was cut off) then the electrostatic waves

propagated undamped in the plasma.

3.3 The Generalized Operator (2 (/]¢)

The homogeneous equation (3.2-3) for the generalized
single-particle function is used with an appropriate
undisturbed state to define the operator Z?(Nt). The
operator, which is a function of N velccities, the wave
vector /? and time, 1s not symmetric to the interchange of
7): with any other velocity (the N-1 other velocities may
be exchanged symmetrically). Although @f/ll‘) may be
used to rewrite the solution for 7?“?/[:‘) in a simple,
formal manner, its real importance becomes evident when we
consider other equations of the hierarchy. We find below
and in Chapter 5 that the operators ég(%) may be used to
write the solution to each equation. The solution contains
two types of terms. First, there 1s a product of 4%(?)

operators and an initial value.function; second, there is a
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convolution integral in time of \73 (¢) operators with a
(time-dependent) source term. The latter term does not
enter the present discussion as it does not significantly
influence the short-time behavior of the distribution
functions (it is discussed in detail in Chapters 5-8).

The operator @ (/]t) 1s defined by the differential

equation

“'3‘— /,.;? (112) * %(/)@(9(/12‘) =0 (3.3-1)

with the initial condition

@ (/1t=0) =1 (3.3-2)

We have introduced the notation

N
Ky )2 iRy - ,—\"/—/?7’//()2(5@- - ) (de2)) (3.3-3)

where the parenthesis ( 1 «» j ) indicates that the
velocities /T}; and /'g' are to be interchanged. The operator
N/
f;?) (/1¢) may be used to write the solution for 7{.{. “(1¢)

in the following way

Nt

f (18 = mt);f(//r :0) (3.3-4)
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An explicit expression for the operator is found by
taking a Laplace transform of (3.3-4) and equating the
result with the solution for 7[‘/?';’\4?/ /,o) found above in
Section 3.2 (equ. 3.2-15). The operator @ ( /I,O)
written in terms of the lLaplace transform variable p, has

the following form

L LT A (1))
PRy 5 priRi 70»-:»?-/25

(3.3-5)

L do
+ NDL)ZINDR“QA‘Q) (/‘_:‘?_)_‘+cc.
Jl ,o.«-,‘?./p;' ¥ 70» "K"’ﬁ /on‘/cyg-‘

The single-particle distribution function 7% (1¢t)
vy
is obtained from 1£. (71t) by integrating over all velo-

cities except /77,' . We write, from (3.3-4)
N-1 M1
72,(/!1‘) ‘-‘J(dﬁ) @(/If);i: (11¢) EE(/It)é(/lt=o) (3.3-6)

where the reduced operator _@ (/1) depends only upon
-— -

the velocity - (as well as the wave number K and time).

When the expression (3.3-6) is compared (after taking a

Laplace transform in time) with the solution (3.2-23) for
7% (/] ,o) we find

2V acﬂmf 24
L, WO iR (3.3-7)
Pk (p+ika;) E(K L)

7?(/!;0) =
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22 The

in agreement with the result obtained by Dupree.
operator —@( /|t) , obtained by taking an inverse Laplace
transform of (3.3-7) propagates the function 7‘; (/it=0)

in time according to the linearized Vlasov equation.

The form to which the operator @ (s I,o) reduces
after an integration over N-1 velocitles depends upon the
function on which it 1s operating ( 7F N)é /lt=0) 1n the
case of (3.3-—4)). We show in Chapter 6 that a hierarchy of
"reduced"”" operators may be constructed from a sequence of
functions a: N"( /) which have the same overall properties
as 7[) N’i( /It =0) but differ as to how the appropriate
symmetry is obtained.

We have shown in Chapter 2 that the equation for

7[) Mv( {v}|t) (where V23 ) may be written in the following

(2 %) e 97
R L) R )L

If a small parameter & 1is used to order the distributlion
NV
functions (as in Section 3.2, 7[\ T G (5°) ) and the para-

(3.3-8)

3
meter £ is of order (& or smaller, then the entire
Ve
right-hand side of (3.3-8) 1s at most of order & .
Furthermore, the last term on the left-hand side of ( 3.3-8)
y .
1s of order 6 "°. For small values of O , terms of O(Y")

or higher may be dropped from (3.3-8), and the vz equation
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of the hierarchy reduced to the following homogeneous form

( )7[ (fb}/z‘) =0 (3.3-9)

The operator %{, for V = 2 may be written

’?z\"’/?v
(see (2.13) , after taking a double Fourier transform in the

—

spatial variables 3?, and X, ),

2 N

W/z,?z = ZK-/bv —/-%K/ %/C)JZ {&% d%) 1%’4) (303_10)
N
- a a a

p= 9 _ 3 .
(- 5A (5 - 55)a) (3
=%(/) +%(.’27

N,
and the equation for 7[; P (12]t) becomes
1

(*— * ?/ OBy /4))/,; =0 (3.3-12)
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The operators /V—* (1) and #.. (2) commute to

) (“‘) 12 The only terms which do not commute are those
which have been added to (3.3-10) in order to write (3.3-11).
We may now use the @ (i‘) operators to write the solution
of (3.3-12) as

N,2 N2
L (ra1t) = 02 (11t) 42 (alt) . (ralt= (3.3-13)
’g«.f R 1) Ruait)f. (rait=o)
In gereral, (to within an error of O{r‘g)) the 'I)Zﬁ equation
of the hierarchy may be written

vV MY

(ﬁ +Z rz)) 7[_“.;/{0}12_‘) =0 (3.3-14)

I

with the solution
N v N
£ (t) = TRty L (fodlt-o) (3.3-15)
K- ~Ky =1 "; K//‘;)
If both sides of (3.3-15) are integrated over the velocities

in the set {N-V} we find

B )

7/1?; ({o}it) = W mt)[,({v}to) (3.3-16)

Ko it K
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The case U = 2 is discussed in detail in section 2 of
Appendix C. We note that if the initial conditions are such
that 7/:?;741)/-(-; ({v}|t=0) may be written as a produet
of single particle functions (the particles in the set

are statistically uncorrelated) then, for short times at

least, the 1) -particle function remains factorized.

Y V

fmd (follt) = f(P/( t) /s (i1t o)) (3.3-17)

I

3.4 Digcussion

The initial response of a plasma to a small disturbance
has been studled above. The assumptions that the amplitude
of the disturbance and the plasma parameter E were small
quantities were used to decouple each equation of the hier-
archy from the others. Each equation was solved in terms of
the generalized propagator @ (t) and the initial value
of the correlation function, 7[' ,ﬁv}[t:o) . The result for
the single-particle distribution function /5 (/)  was
found to agree with that obtained by Landau when the level
of deseription was reduced by an integration over the N-1
extra velocity coordinates. FPFurthermore, if the U -particle
function could be factored initially (which means physically
that initially the particles were statistically uncorrelated)
it was found to remain factorized, for short times at least.

2,V
The solution for 7[’ { {u} }t) became a product of U time-
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dependent, single-particle functions.
If a plasma 1s stable then the solutionsto the homo-
geneous equations (3.3-9) have a part which oscillates as
E?-iﬁuﬁf , and a part which decays exponentially with
time (Landau damping). In the 1limit of large times it is
the "source" terms on the right-hand side of each equation
that determine the long-time behavior of a stable plasma. We
show in Chapter 4 that if the plasma is spatially homogeneous
( f‘M/(/lt=o) = O ) and if the parameter £ 1is small, but
not zero, it 1s the first term on the right-hand side of
(2-15) for 7[' N'a(/;)lt) which determines the dominant behavior
at long times. The inclusion of this term, which involves
erohﬂ » links the third equation of the hierarchy to the
first. We show that the simultaneous solution of the first
and third equations leads, upon a reduction in the level of
description, to the Balescu-Lenard collision term.

On the other hand, if the plasma is unstable there is
at least one mode of oscillatidn of the homogeneous solution
(3.3-17) which grows exponentially with time and dominates
the solution of (3.3-9) in the limit of large times. If

f‘/'/(/lt) grows as Eﬁ s the solution for 7['2'&(/2]{‘) ’
since it involves a product of two Z? (t) operators,
eaﬁ s /»3/?/23/1_) as €3Xt , and so on. It
is a feature of the theory that the growth rate B% is

grows as

independent of time, and the solution of the homogeneous

part of each equation of the hierarchy grows indefinitely in
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time. If the amplitude of each function #  ({V}|t) 1s
not to become infinite it must be prevented from so doing
by the source terms on the right-hand side of each equation.
These terms, which could be discarded initially because
they were small, must be included in the limit of large
times. If a disturbance, which is initially of O (o), grows

exponentially we find after time ¢

£ @) ~0Olse™ (3.4-1)
The time at which 7§ (t) becomes of (5(1) 1is then

t ~- &o (3.4-2)

However, not only does 7p (t) become of O(I), but 7[’(1‘) s
f (¢), ... also become of O(J) at time t (3.4-2). The
terms on the right-hand side of the equation (3.3-8) are no
longer small compared with the ones on the left, and each
equation of the hierarchy becomes coupled with at least one
other equation. The complete hierarchy of equations must
be solved for an unstable plasma, a problem considered in

detall in Chapters 5 through 8.
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CHAPTER 4

KINETIC EQUATION FOR A STABLE, HOMOGENEQUS PLASMA

4.1 Introduction

A kinetic equation for a spatially-homogeneous, stable
plasma 1s derived from the hierarchy of equations for the
N-momentum functions 7[\ML?{U}}t) . The discussion is
limited to a plasma in which there is no magnetic field
present. Quantum and relativistic effects are neglected.
To proceed, we derive from the hierarchy (2-17) a general
kinetic (master) equation of the form (4.1-1) for the dis-
tribution function £ o (f) .

NO
éig.&): C[FM%H] (4.1-1)

The "collision" operator on the right-hand side of (4.1-1)
contains only the N-momentum function 7FHM (t) . Once the
general kinetic equation has been obtained the level of
description may be reduced by an integration over all but

12 the above

one of the velocities. As discussed by McCune
represents an alternative approach to that usually taken in

the derivation of a kinetic equation for the single particle
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function.

The plasma parameter £ , assumed small, is used to
order the terms of the hierarchy (2-17). We show in
Section 4.2 that, with the adopted ordering procedure, the
hierarchy can be truncated at the equation for the two-

N Q
particle function 7[’ ( /Qlt) . The problem is reduced
(to within an error of O (£€2) ) to the simultaneous

12 has solved these

solution of two equations. McCune
equations by the method of multiple time scales to obtain

a generalized kinetic equation of the form (4.1-1). The
methods of Appendix C are used in Section 4.3 to reduce the
general kinetic equation to the kinetic equation of Balescu
and Lenard. Finally, we discuss in Section 4.4 an alternative
derivation of (4.1-1) which stresses the statistical nature

of an assumption which must be made to obtain a kinetic

equation for a plasma.

4.2 Generalized Kinetic Equation

The single-particle function vanishes identically in a
spatially-homogeneous plasma. The terms of the equations are
ordered by means of the plasma parameter £ » assumed to be
a small quantity. The N-momenta function / “O(#) 1s
assumed to be of (O(7) . The equation (2-2T) for fMQ(/QIt)
contains the term E ﬁg (F™°)  wnich 1s of Ol(e) .
The function fMQ(/QIt) 1s thus of (J(£) . The fourth
equation of the hierarchy (for f M‘?( {3}|t) ) contains the
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3, \NR Nl
term Evﬂﬁ?(f ({&‘}:‘l‘)) {remember 7[‘ l’/iz“)?(_‘) )s

and we conclude that fA/'3({3}li‘) 1s of O(£%) .

The fifth equation has the term £ ﬁP‘/\/fMQ) f/ﬁ) s0
/M‘/({‘/Hf) 1s also ot O(€%) . The higher

functions, fMU({U}/t) for U > 4, are of @'(53) or

smaller. If terms which are of second order in £ or smaller

are discarded from the hierarchy, the formulation is reduced

to two coupled equations.

é O( ) {N} 536{)_(. 30[3" MQ.
T ZJ v v Lef wi e

M Na 2_NO
/ ¢
s T+ (W Hajfvait) = € OF ) (n2-2)
We have assumed throughout that the initial conditions on
the problem are consistent with the above ordering procedure.
The two-particle function for a spatially-homogeneous

plasma depends only upon the distance between the poeints

1l and 2.

2 N,
F(R71t) = € g7 (1%-%1¢) (4.2-3)

N
where the function g ’2( 7/21t) 1is now considered to be
of O(1) . It is convenient to rewrite the right-hand side
of (4.2-1) in terms of a Fourier transform in the variable
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—— —— -—
X,a = Xl _X:z . The convolution theorem for Fourler

transforms 1s used to write

dex L Tapf i #ﬁfdx Tapg“opn)

_E M (4.2-4)
where we have defined the Fourier transform of Uq i‘) as
N, iy (4o o R i%) N3 )
G G1t) —fd@ e 971t (4.2-5)
and introduced the new operator
T T AP 3 3 )(/Z-—+/2‘) (h.2-6)
=- b= - &= )
The notation ( k—‘- :_’%) is used to denote that, when
J - -
the operator L@ ,/) acts on a function of /(,- and /{/ ’

/?,' is to be replaced by /? .. and 7{; is to be replaced

by -X . The equations (4.2-1) and (4.2-2) become

{n}
ETZ:Z Gj)g" i) (4.2-7)
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N,
(% * B - B (9’)‘,9;3(/91f) =Q,wF ) (4.2-8)

where

|o/

G, va) = iRV (4.2-9)

S
S

We note that the right-hand side of (4.2-7) is of (J(E)
compared to the left which suggests that there are two time
scales on which events can be expected to occur. HcCune12
has solved equations (4.2-7) and (4.2-8) by the method of
multiple time scales.32’ 33, 34, 35 If the function

is expanded in powers of £

F¥a) =7O'N‘°(t) + 57,-"N'°(z‘) (4.2-10)

and the multiple time scales 7 and £7 introduced,
then equations (4.2-7) and (4.2-8) may be solved to obtain a
general kinetic equation (equation (51) of ref. (12)) for
the evolution of ZTMO(t)on the slow (£7 ) time scale. The
condition that the initial correlations g”"‘z (12l t=0) ats-
appear from the plasma in the limit of large times by the
process of phase mixing is used in the derivation. We do not

repeat the calculations but merely quote the result (rewritten in
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the present notation)

Q;F(Egﬁ /szdf /-’fﬂﬁ('lf")pﬁllf’) (/&w)T (E'f‘)
(4.2-11)

Equation (4.2-11) predicts the rate of change of the function
7:/\40( £€7) on the slow time scale. We show in the next

section that the linear equation (4.2-11), when integrated

over (N-1) velocities, reduces to the non-linear kinetic

equation of Balescu and Lenard.

4.3 Reduction of the Level of Description

Equation (4.2:11) beecomes, after an integration over

o N 'y
the N-1 velocities A/:Q escce /)J;/

AMO
é( ) j{dxr) L//a)fﬁ(/h")p(.?rf) (/9)7;_ (E7) (4.3-1)
where we have defined the single particle funetion
- -/ MO
fB) = f @) F " (er) (4.3-2)

N"/ P 4
and (d/'z'}) denotes the velocity element d’UZL coves a//z/;\, .
We noted in Chapter 3 that the spatially-homogeneous function
Yo
F U (E) could be written as a product of U functions

7[, (/)  for values of U much less than N. This observation
is used with the result of Section 2, Appendix C, to write




Je#)" Ron Ruary QT en
: _f (dig) 2 (17) By (1) %(/a)ﬁ@ﬁ@ j  (4.3-3)

The propagator ZE% (1177) 18 the same as that
obtained from a solution to the linearized Vlasov equation
except that here the Laplace transform of Z?(/FTQ (in

the variable 7‘/) depends upon the slow time scale ( £7T )
through the presence of the function /[}d}) in the operator.

El11p)= —2e » KIW 30 J i BF (4.3-4)
T RE T (e iRE) ERp)

where
Wy Sfbv)
@R p) = 7 ‘fdﬂ{ Z]Of T

Equation (4.3-1) becomes with the result (4.3-3)

a (—:) - —\ g / / /
gé% ~fd/z5é(/a)f dr' Ruir)par)Qeafimfor)  (4:3-5)
(o)

The convolution theorem for Laplace transforms is used to

rewrite (4.3-5) as

aa(f,,ﬂf)) T fdﬂf L(/a)fo/pp(/ P Rlato)Qayfmfug) (436
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where the contour C passes to the right of the poles of
_%)(/170) and to the left of the poles of E(Q}-,O) .

The definitions (4.3-4) of the operator 7;%»(/},0) and
the function E£(K,0) are used to write

670(/2/)
N éﬁm) KV YA -
7,{3(”70)2/(3”(/() YA /ommr)E(x,,o) (4-3-1)
and
fdm?’(:z}p) K¥)- aﬁ%) =1 - E(-é-f:) (4.3-8)
)

The right-hand side of (4.3-6) may be written in the following

convenient way (we leave out for the moment the operator /_(/&))

e fdjo P(/]O)‘Q/U'P (le)éz?(/a)f”)f%) -

=-/_.-.fd{ i S s
TP\ (ori) E(K,7O) ECE-p)

N #0%) .3-9)
Koy S [t e mmv""éﬂfd,ﬁ%—: (4.3-9)

(Pnl(ﬂf') E(X L) 5‘(,(,.,0) (po+iR7) € (R0
M)

- ?KV(/()
o) ok __,O_WF&
70*2}(4)' (_/("‘)_70)
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The contour C passes to the right of the pole 7O=‘2"f 47/:
in the first term of (4.3-9). If the contour is moved from
the right to the left of this pole, the first term may be
rewritten as a contour integral plus 2y1 times the residue
at the pole. We finad

SfUi7) _ L)
“/*fd K ¥ix)- anjﬂ-f fd’” 2 -0- IR,
A (f0r:RE) E (R, 0) E(-R,-p0)

iKWk ﬁ”) f 7[‘ (/7)

) |ER,-i#7)) 2 R, (% - e (4.3-10)

/?%)
o d ; K V/() alv‘ f 1;0’-2/{ﬂ/'

i), (,o m){(—xp') Ek,-p')

where

iR ) - ‘é‘l

iR @ -/I/') + 0‘

ER-iRif)=1 - [dig

The amall positive parameter O  has been introduced to specify
the way in which the path of integration is to go around the
pole. The new variable 70/ =-£0 has been used to write the
integral of (4.3-10). The contour C' passes to the left of
the poles of (£ (%, -701))-’ and to the right of the rest
of the poles of the integrand. We note that the integrand in



the second term of (4.3-10) 18 the complex conjugate of the
integrand in the second term of (4.3-9). The difference
between these two integrands, divided by 271, is then a
purely real qasptity. We note from equation (4.3-6) that
since af(./ﬁ)/g(er) is real and the operator /(/2) is purely
imaginary, we require only the imaginary part of (4.3-9).
The second terms of (4.3-9) and (4.3-10) do not contribute
to this imaginary part.

The third term of (4.3-9) has no poles to the right of
the contour C and vanishes when the contour is closed to the
right. The last term has a single pole O= _2-;(’.,;,7. to the
left of the contour, and the integral may be evaluated by
closing the contour to the left. We find the following
result

g#j; @(//20%/’77;\17-?2(&/70) Se 62) F1) f i) dlp =

aﬁv,z
RV 37 (4 FUB)
|ER R/ 7RG+ 6
IFUR) 4.3-11
7['(/?7“) - 2/{}'/(/() a/U' , RenAL '( )
E(/?‘z"/z'}) 2 -iR(7% - ,)m 7ERMS

The numerator and denominator of the second term of (lt 3- 11)

are multiplied by C(K)-i%if) to obtain
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“I(Kj 97[’(-::7
df//L ) R V1Y
7[‘(4‘)—}) - //{yj//(.)_w _&ﬁ@ d/y“ %’; ) \}d/?; »2/( (’Z/g /’2/") &
E(—'/?){/?yif) (/f-(/zﬁ»/;;)f-c‘ I £ (/‘( R ),Q
! RV e | }
. 2 4,.3-12)
ljd/sz_:é?- (/'27_; S (

-fom) =
|, - mmf*

where the second term of (4.3-12) is a purely real quantity.
The above integrals may be simplified by an integration
over the components of velocity perpendicular to the wave

vector. K . If the component of /¥, , parallel to A 1is
denoted by , , then we find

LA OF (u5)
jd_; /(%K) 3_/1-;_5 “J A ¥ix) Uy
W o = gy, ,
K(%-7%)+io KlUy-U)ri 6
(4.3-13)
'..,. ffﬂfz) _ ( . 7'(512)
didy 5—"~ = idu, ;
K-, -fb7)+)o‘ J Ky -2) +20
where we have defined the new function of velocity
Fluy) Ejd@ $(u, - ’{/'{%)/@) (4.3-14)

The Plemel] formula26

Lim [ Flu) Flu) e - L
oy 1% 25 lotos Tt $T s .3-15)
60 )M i du a7 ol Fie) O(u v) (



( gé denotes the Cauchy principair value of the integral)
18 used with the relations (4.3-12) and (4.3-13) to rewrite
(4.3-11) as

:3?—" d7o7D(/ W@M?M-p)&(/m /mf/@

i T ¥K) afw; 9 Flu,)
| ( 2 / ) ) (4.3-16)

“RTRER -k

+ ReAL TermMs

where

The relation (4.3-16) 1s substituted into equation (4.3-6)
for afzﬁ)/é(gfj to obtain the final result

fB) _ J’ a7 1RV (afmf) /( )87'11, )
deT) W (4.3-17)

)@ [e® -kt \ du,

in agreement with the kinetic equation of Balescu'd and
Lenard.20 We note that this is a non-linear equation for the
evolution in time of the single-particle function. Whereas
the behavior at the N-momentum level of description is linear
((4.2-11) 1s a linear equation for TN‘O(-z-) ), the
behavior becomes non-linear when the level of description 1is

reduced.
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4.4 Disgcussion

The small parameter £ has been used to order the
generalized correlation functions and to determine the long
time behavior of a stable plasma. The hierarchy of equations
(2-27), truncated at the equation for the two-particle
function, was then solved in Section 4.2 by the method of
multiple time scales to obtain a linear equation.for the

. N,O
time rate of change of the function / = (Z) of the N

momentum of the system. !leCunel2

has polnted out that any
function of the total energy of the system is a stationary
solution of (4#.2-11). Purther, he has noted that a large
class of these functions of the total energy (subject to the
condition that they be normalizable) reduce upon integration
over N-1 velocities to a Maxwellian distribution in the limit
of large N. We have shown in Section 4.3 that the general
kinetic equation (4.2-11) upon integration over N-1 velocities
reduces (in the limit N — o© ) to the Balescu-Lenard
equation. The only stationary solution to this reduced
equation 1s the Maxwellian distributionlg, in agreement with
the findings of McCune.

Both the Balescu-Lenard equation and the master equa-
tion thus predtet the irreversible approach of the single-
particle function towards a Maxwellian distribution. It
should be noted that the set of coupled equations (4.2-7)
and (4.2-8) from which this solution was obtained are time

reversible. The reversibility was lost when we introduced



the assumption that the weakness of the correlations in the

plasma ( 7//%ﬁy:;wﬁ‘v'jgi) ) led to two widely separated

12,36 Events which

time scales on.which events could occur.
occur on the fast time scale happen so quickly that their
asymptotic behavior may be uséd as "initial" conditions for
events which occur on the slow time scale, and the latter
appear to the observer to evolve irreversibly in time.
Another derivation of the results of Section 4.2 is
possible which brings this approach more into line with
the 1deas of Prigogine, Resibois and Baleseu.37’9 The
derivation begins with an exact solution of the equations
(4.2-7) and (4.2-8). The solution of equation (4.2-8) for
EMQ(/QIt) may be written in terms of the operator

ﬂ%(%? in the following way.

>
P
s
£
A

; ¢ = L T o0
-
\'f‘:’ . (aou-l)
+ (d7 m(// -7 @wt }d«*(/oz)/‘ (7

%
e NO L,
The equation (4.2-7) for / (i) now becomes with the
substitution of (4.4-1)

57‘_ _(¢) __QZ?TNL/ ey w
F>Z- TN ; ‘VJ_Z, Ly zdlt)ug i ey o
(N T (4.4-2)
. TR ‘
TL/{J 2‘ “}“:"(é‘/l/{ 44 ;\i?lf’“‘/ (,:\ N Q_/:; {n:; \'l }
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The equation (4.4-2) for the time rate of change of the N-
momentum function has two characteristdts which are typical
of a gensral kinetic equation which is valid for all times
(compare with equation ( 3.2-11) of ref. (37)). First,
there 1s a term which represents the effect at time t of the
initial correlations in the plasma. This term is important
during the initial stages of the evolution of the plasma.
Second, there is a term which 1s non-Markovian. We see from
(4.4-2) that the rate of change of 7 ‘O(#) at any time t
depends upon the values of 7 “°(+) at all earlier
times. The non-Markovian behavior arises from the convolu-
tion that is a consequence of the finite time of collision
between particles and the finite correlation length in the
plasma. In order to bring equation (4.4-2) into agreement
with equation (4.2-11) of Section 4.2 we need to change
(#.4-2) to a Markovian form. This is accomplished by intro-
ducing the assumption that the colliston time (memory) 1is
sufficiently short that the change of ¥ 7°(¢) during this
period may be neglected (compare with the discussion of
Grad38). With this assumption F e (7) 1s replaced
by 7 ™°(¢) 1in the more general integral of (4.4-2)

and the kinetic equation becomes Markovian. In the limit of
large times the initial conditions die out and we may rewrite
(4.4-2) as

FY%) g [N we
I, £ ldfé; 2 LEHRENRYMQGF D (hep)
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in agreement with the general kinetic equation of Section 4.2.
We have discussed in Section 4.3 the reduction of equa-
tion (4.2-11) to the Balescu-Lenard equation for the single
particle function. The reduction was accomplished by
rewriting the integral on the right-hand side of (4.2-11) as
a convolution integral in the Laplace varilable 70 and
making use of the argument that the function 7 >°(¢) tm
this integral could be written as a product of U single
particte functions f (¢) . However, note that the
integral on the right-hand side of (4.4-2), when rewritten
as a convolution integral, contains the function 7Ed%oeﬁ0 .
The reduced function  F ~°° ( ») of the laplace variable O
cannot be written as a product of V  single particle
functions 7f(¥9) . However, it 1s still possible to reduce
the level of description of the collision term to obtain an
equation for the single particle function. The result is
expressed in terms of a convolution integral in time. Thus,
the exact solution of the equations (4.2-7) and (4.2-8) does
not require that the N momenta be spetified as the evolution
of the system can still be described inyterms of the single-
particle function. However, a very detailed description is
required as the behavior of the system at any given time 1is
dependent upon 1its entire past history. To further simplify
the description an adiabatic assumption must be introduced

to reduce the equation to its familiar Markovian form.
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SR CHAPTER 5

FORMAL SOLUTION OF THE HTERARCHY FOR AN UNSTABLE

PLASMA IN THE LIMIT £ -0

5.1 Introduction

. We consider in the remaining Chapters the problem of
& weak instablility in a low-density, high-temperature plasma.
In such a plasma collisions between particles occur so
infrequently that their effect upon the behavior of the gas
may often be neglected. For example, the plasma in inter-
planetary space has a mean free path on the order of 1
astronomical unit and a Debye length (the scale on which
collective effects are important) on the order of 10 meterx.
If such a plasma 1s unstable the mechanism which 1igits the
instability and brings about its final deecay cannot depend
upon direct collisions between particles. We propose to use
the hierarchy of equations (2-17) for the distribution
funetions /rAu?{th) in N-momentum space to study collec-
tive interactions in an unstable plasma.

There are two advantages to be gained from a considera-
tion of the problem from the point of view of the equations
(2-17). Pirst, the equations are linear. Even the effects
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of mode cou#ling are formulated in a linear way, aAféatanec
which 1s in sharp contrast to the non-linear character of

the Vliasov equation. Second, the operators }¥b: 27L) and qu
which appear in the equations are independent of time, and
the problem of an unstable collisionless plasma may be

solved without the introduction of an adiabatic hypothesis

or multiple time scales. The disadvantage is that the entire
hierarchy of equations must be retained in the analysis. It
is not possible to truncate the hierarchy at the 1)th member
and to consider only the 1 1lowest equations.

Collective interactions in a plasma have been the
object of much research in recent years. Analytic investi-
gatlons of self-limiting of linearly-unstable plasmas have
been confined to the so-called "bump-in-tail” instability

in the weakly-unstable limit.2Y

In such an anstable plasma
the interactions between particles and waves dominate over
wave-wave interactions, and the latter may be neglected in
the lowest order approximation. The simplified equations of
"quasi-linear" theory represent a first correction to the
linearized theory and describe the self-limiting of the
1nstab111ty.23’2u The non-linear mode-coupling terms,
which remain small, are treated as a perturbation to the
quasi-linear solution and lead to a redistribution of the
energy throughout the wave spect:r'txm§9’uo’41 The results of
quasi-linear theory are reviewed briefly below. The

remainder of this Chapter is devoted to a discussion of the
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basic assumptions, the simplifications of the hierarchy
(2-17) that result from these assumptions and the formal
solution of the simplified equations.

We consider in Chapter 6 the problem of reducing the
level of description of the solution for Zghublt) from
N velocities to that of a single velocity. A hierarchy of
operators is uncovered in the course of the reduction. The
"reduced" operators are found to be simply related to one
another. The form of the solution in the limit of large
times 18 determined in Chapter 7. Purther simplifications
of the solution are found in Chapter 8 by taking the limit
that the initial growth rate of the disturbance is very small.
The equation for the spatially-homogeneous function 7"” o(t)
is found, after these simplifications, to be a diffusion-
type of equation in agreement with the results of quasi-
linear theory. A method is proposed in Chapter 9 for
obtaining a simple expression to approximate the growth with
time of the energy in the initially most unstable mode in
the plasma. The approximate solution is found to agree
qualitatively with results obtained by Drummond and Pinu823

from a numerical calculation.

5.2 Review of Quasi-Linear Theory

The quasi-linear theory of unstable plasmas 1s based
upon two assumptions. The first is that the number deniity
is 80 low and the plasma temperature so high that collisdons
between particles may be neglected. The second is that the
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energy in the disturbance is much less than the mean kinetic
energy of the particles.

In the limit that the plasma is "collisionless" it is
possible to find a "solution" to the BBGKY hierarchy of
equations.26 This special "solution", the non-linear Vlasov
equation, 1s itself an equation for the evolution in time of
the single-particle distribution function (1) =1). It is
sometimes referred to as a correlationless kinetic equation
because to obtain it correlations between the velocities of
different particles must be neglected for all times.

Only one exact solution to the Vliasov equation has been
found, that of’a steady-state, one-dimensional electrostatic
wave in a plasma of ions and electrons..42 No time-dependent
problem-has yet been solved exactly. To attack the problem
of an unstable disturbance it is customayy to separate the
single-particle distribution function into a spatially-
homogeneous part g(n_f' [t) and a spatially inhomogeneous part

ZQ(%?I?) . The equations for these functions are

37['?: +zkmf ~iX Yix)- égfo/m/g (5.2-1)
o f g
ig; UR-PVIRG)- =2 i -3
.Si_;l = %:j (%) fdmf_. : (\52-2)

where we have written the disturbance as a sum of discrete



modes. We have further assumed that there is no applied
electric field.

There has been as yet no simplification as equation
(5.2-1) for /2} is still non-linear. To simplify the
analysis it is necessary to introduce the second of the
above two assumptions and to consider a plasma in which the
mean kinetic energy of the particles is much greater than the
energy of the disturbance. A parameter O 1s used to charac-
terize the order of magnitude of the disturbance (zg'NtﬁﬁT» .
If O 1s small then the non-linear term on the right-hand
side of (5.2-1) is small compared:with the terms on the left.
We may then neglect (for times which are not too long) the
non-linear terms in (5.2-1) and reduce the formulation to

the pair of coupled linear equations (5.2-2) and (5.2-3).

g_;_% +i R —e‘x/‘y/(/«)«fgfdﬁ,g =0 (5.2-3)

However, even the linear "zero order" equations have not
been solved exactly because equation (5.2-3) for 76%
contains the operator i?%ﬂk?’S%%ufaﬁﬁ which is depen-
dent upon time. The approximate methods which are employed
to solve (5.2-3) require either the introduction of an adia-
batic hypothesis21223:39 or the use of multiple time scales.t3:%1
The basic assumption 1s that for a weak disturbance

(7% ~ O(c) <<j) the function cg changes very slowly in time
so that one may solve equation (5.2-3) for ],g holding Q
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constant. Equation (5.2-3), solved to &'(0°) in the 1limit
of large times (so that the free-streaming C’i?ﬁ;t terms
damp out), is combined with (5.2-2) to obtain a diffusion
equation for<g . The diffusion of é? in velocity space
eventually limits the disturbance to some maximum amplitude.
However, in orderfor the adopted ordering procedure to
be valid for all times, the disturbance must be limited to a
small equilibrium amplitude. The requirement that f;
remain small i1s used to show that the growth rate & of the
disturbance must be very small ( J'~O(s?)). If /g- ~O6(s)
for all times then the non-linear terms of (5.2-1) remain
small and may be treated by perturbation methods. The non-

linear terms have been found to lead to a redistribution of

the energy throughout the wave spectrum and a gradual damping

of the disturbance.

The present approach has the advantage over "quasi-
linear" theory that the equations for a collisionless plasma
can be solved directly without introducing an adiabatic
hypothesis or multiple timeseales. Further, the equations
are linear so that no perturbation methods are required to
deal with the mode-coupling terms. We find in Chapters 6
through 8 that the problems of this theory are not involved

with the éolution of the basic equations but with the reduction

of the solution to some simple form. We show that if the

initial amplitude of the disturbance is small then.many terms

may be approximated by their asymptotic forms with a resulting
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simplification of the solution. Further, we find that the
order in which events occur depends upon the growth rate 5’.
If 5ﬁ is less than unity then the "mode coupling" terms

in the solution do not become important until some long time
characterized by t~ T whereas the "quasi-linear"” terms
become significant at a shorter time 7 < T. We show that
if 54 is sufficiently small then the quasi-linear readjust-
ment of the plasma takes place completely before the mode-
coupling terms enter the solution.. In this case the amplitude
of the disturbance remains small for all times. The results

are consistent with those of "quasi-linear" theory.

5.3 Basic Assumptions

We assume that collisional effects may be neglected and
take the 1limit that the parameter £ —- (0O . Terms like
E &QQfTMJ in the hierarchy equation (2-17) become
vanishingly small in this limit. However, the order of magni-
tude of terms like & %?if5¥?QZWQO7F%§7 is (by the
arguments of Chapter 2)

3 N, - v
w-v)€ F ") = 557 olF™)

and must be retained. The hierarchy becomes for a collision-

less plasma

U | V¢ | DF
( a% . %'))f “oe) = %”(f'ffﬁﬂuz)) ol 1)( Vo) (5.3-1)
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In order to interpret the terms on the right-hand side

of (5.3

-1)
X, of the equation for f U1t). We fina

(—- +2/(/U')][ (/ 1) ~~~/{ Vi) - Z(%- : )]/gﬂ(d;lt) =

we take a Fourler transform in the spatial variable

Q@Iia’

. ML
--af-iw%d@(@w—w &gy 40
(5.3-2)

N
e 5(’”[ Jdg ¥y (S/U’ @-)ég (10
; {N-1} L N3

G L2 G 3 (5 sg) o

The ‘second term on the right-hand side of (5.3-2) (with the
5 ( F ) ) removes the spatially-homogeneous part of the

first term from the equation. Since we consider equation
(5.3-2) only for non-zero values of /{(f (1|]t)= O by the
condition fdx F M (11t) =F" (t)) the second term does not
enter the discussion. The first term on the right-hand side
of (5.3-2) has an analogous form to the non-linear term on
the right-hand side of the Vlasov equation (5.2-1). Similarly,
the last term on the right-hand side of (5.3-2) has an anal-
ogous form to the term on the right-hand _side of equation
(5.2-2) for Q(V|t) . We expect that the first term leads
to a redistribution of the wave energy and the last term to

& diffusion of the distribution function in the (N-1)

dimensional velocity space /2_\5 , /77'3 seces /z'/:j . This 1is



found to be the case.

We assume that the plasma is unstable to disturbances
whose wave numbers ﬁ? lie within a certain range‘A;Z . The
discussion is limited to the "bump-in-tall" instability.
Each disturbance is assumed to have a unique initial growth
rate &% and an initial amplitude characterized by a
parameter O . We have argued in Chapter 3 that if ¢ is
small the terms on the left-hand side of the 1 *P equation
(5.3-1) of the hierarchy are initially an order of magnitude
larger than those on the right so that for short times we
need solve only the homogeneous equation for each function

fw%{v}lt) . However, we find that fN'o({v})t) grows as
€°*" where ¥ 1s a constant and that after a time t the

terms of (5.3-1) have the orders of magnitude

RS ~oleety
7}7))]["'4”*/ - O(Gebxt)ﬁ*-l
L7 L ols et

(5.3-3)

When f"--f%%g: the terms on the right-hand side of (5.3-1)

are of the same order of magnitude as those on the left and

“no
3

characterizes the time at which each equation becomes coupled

cannot be discarded from each equation. The time t”~-

to other equatlons of the hierarchy.
The smaller the initial amplitude of the disturbance and
the smaller its growth rate the longer i1s the time before the
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o\ "\5 V#/ \A// Z)fQ
terms which contain ; and begin to influence
I 7

significantly the solution. Since these terms represent the
processes of diffusion in velocity space and redistribution
of wave energy we expect them to influence the behavior of
our system slowly if 6 and 5/ are small.

For long times, therefore, it is not possible to trun-
cate the hierarchy at the Y th equation by discarding the
terms which involve /q Vel and /q because f?Mo s
which would then grow at the rate G’ 1ndef1n1te1y, can
be expected to lead to anomolies in the solution. The problem
of an unstable plasma involves the solution of the complete
hierarchy of equations (5.3-1) The solution for the single-
particle distribution function involves an infinite number
of terms, reminiscent of the solution (3.2-29) for the short-
time behavior of 7/[2: (r]t) -

For the moment we neglect in each equation the terms

%7v(fﬁwvﬁ) which lead to a spreading of the wave energy.
We emphasize that this step is not necessary to obtain a
solution of (5.3-1) since the terms which are discarded are
linear. Indeed, the contribution of the terms }quvaﬁ)is
discussed in Section T7.4. However, their inclusion increases
the complexity of the solution, and it is desirable to antici-
pate the quasi-linear result that in a weakly-unstable
plasma the diffusion in velocity space takes place quickly
compared with the redistribution of wave energy. Thus our
attention is confined to some "intermediate" times. We

calculate in Chapter 7 the contributions of the terms that are
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discarded and determine under what conditions they are small

and may be neglected.

The U th equation of our hierarchy now becomes

3 (oo P L
L L 2 i) ; oG Taj)f oijit) =

i
(5.3-4)
iN-0b NV

G 3: Jotiz B f

Both sides of (5.3-4) may be integrated over the velocities in
the set {N~Q}. We may demonstrate the equivalence of the
resulting equations with the quasi-linear theory. If, for

example, the distribution functions are factored as

20
]C ({ONE) = Fufa - Fo

(5.3-5)

7 .‘P}' L —_— .‘ { AL e s Y
( JL C /J}i“ [ /! - / (/)/ (Q) ) * /q i 'I'/i// ; T i/

Loy =fEae , fo-Fa

and substituted into (5.3-4) the equation reduces to a sum of
UV equations of the form

Similarly, the lowest equation of the hierarchy, when integrated
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—

over all velocities except Ny s becomes

afm WJ %JI(JVQ,JO/WFJ) (5.3-7)

The two equations (5.3-6) and (5.3-7) are identical in the
1imit -%%2-9 7 to the "zero order" egquations for quasi-
linear theory. Thus the hierarchy (5.3-4) of equations is
equivalent to the equations of quasi-linear theory (without
the non-linear terms).

However, we do not choose to reduce the level of descrip-
tion at this point to that of a single-particle distribution
function. As was pointed out in Section 5.2 the equations of
the quasi-linear theory are linear, but the time-dependent
operator in the linearized equation (5.3-6) for;[YO requires
that some adiabatic hypothesis or multiple time scales be
introduced. The only solutions that have been obtained to
the equations (5.3-6) and (5.3-7) have been approximate ones.

However, we can, by considering the hierarchy (5.3-4) obtain

an exact solution to these equations.

5.4 Formal Solution

We present below the formal solution of the equations
(5.3-4). Note that in order to solve for the function fﬁM?Qth)
we need to know a function which comes after it in the
hierarchy. We take a 1) -dimensional Fourier transform in
the variables 12)};)- N, ’;% , and write (we add ¥ terms
of C?ééJ as we did in Chapter 3 to write (3.3-14))
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N
[—é—- + ;(:),Ly 2Y) - ...,.?{‘(7)\}7[, ' (Foll#) =
\Jt ] ! 77K, ////'(7 /(u\ el (5‘4_1)
e N, DL /
HLLLGDL L (i)
i<d L K K K

see (4.2-6))

—~

KR
L({/’) operates on a function of A; and /’5
3 R’
o)A, b2
&ﬂo/;- )( /D(I.—-?—/( ) (5 )

As was mentioned in Chapter 3 the operators 791/\7: and #{\5
’4

T 9
LGj) =g | KR V) (72- -

commute to O(ﬁ) so that we may write the formal solution of
(5.4-1) in terms of the operators @(t) .

NY
;f  (llt) = Eunder) - - P(ult)f A({v}lt—O)

1

t {n-0} NI (5.4-3)
* X;fc/f@/;z P(v t1)3.2, L(g)f _ (1IT)
(] ! I3 f/ Rk, ’71'.(1

The first term in the solution for f’ A("///1‘) contains the
initial value of f N"(//z“=0) and the second thmectimeeddpehdent
function ' “¥). The latter function may be eliminated from
the solution for /‘ N'/(t) by substituting into (5.4-3) the
solution for f N"?(t) . However, the solution for f N'3(1‘)
has two terms, one containing f N'?t:o) and the other 7[' Mé—(t) ’
and 1t 1s necessary to further substitute for the function

;[wj(f) and so on. Each substitution for a function

N
/’ (t) 1introduces a term which contains 7[ N'WJ(‘H .
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N,
The solution for é (//*) has an infinite number of terms.

/

Ny {n-1}
f tin) =Rl r)fz/ 7o) jdy Boer)y IZ;;Z/_(J)/?%;(UW) ,,,o, £=0)
l (.7} 1:!
{w-1}
~-3} pu
! Y“‘\"", LA
X - /__{,(m)(/“’ s (1776 IT) (12/8mlt=0
F oo e Nfz‘i,{? R 1 e i s 4‘&5"[&? )

where we have written @4_.@ 1) = @/ﬁ“)@z f)@(l‘)‘) etc., For T
very small the convolution 1ntegrals approach zero(from (3.3-2),
@F (/1t=0)=1 ) and the solution becomes

!
for =20 £ G =(RuI vit-o) (5.4-5)

We have shown in Chapter 3 that, when both sides of (5.4-5)
are integrated over all velocities except /27,‘ » the solution
reduces to that obtained by Landam. Thus, the leading term
in (5.4-4) 1s a generalization of the Landau result. The
rest of the terms, which become important at large times
contribute to the quasi-linear behavior. Note further that
the solution (5.4-4) contains only the initial values of the
generalized correlation functions. Thus, in principle, one
can determine from (5.4-4) the evolution in time of the
generalized single-particle function from a knowledge of the
initial values of the generalized U -particle. However,
the solution for 7§M/(/)t) represents too much information
as 1t contains all N velocities. Having the general solution

it 1s useful to reduce our description to the quantity
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A
{117} by an integration over all

4
velocities except i/ . The reduction of the level of

ég(/h) ; obtained from

description of the solution (5.4-4) 1s the subject of the
next chapter.




CHAPTER 6

REDUCTION OF THE IEVEL OF DESCRIPTION OF THE SOLUTION

6.1 Introduction

The solution for the generalized single-particle function
as written in the form (5.4-4) at the end of Chapter 5 is
unwieldy because of the large number of vélocity coordinates
which are present. Indeed, as discussed in Chapter 3 the
specification of the initial values of the functions
present on the right-hand side of equation (5.4-4) 1s out of
the question. However, we can integrate both sides of (5.4-4)
over all velocities exceptfﬁf, to obtain an expression for
the single-particle function /é; (/1t) . The reduction of
the level of description of (5.4-4) is the main concern of
this Chapter.

6.2 Operators

We discussed in Chapter 3 integration of the quantity
@ (//i')//_? z;z‘m) over all velocities except 71;/; . The result
is 7%(//1‘)]{?(/}{20) where 7'?(//1') propagates the function
Z§Q71F=C9 in time in agreement (to C?(;f) ) with the solution
of the linearized Vlasov equation obtained by Landau. The
result that @(/H’) reduces to the operator B(/It) upon
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an integration over N-1 velocity coordinates depends crucially
NI

upon the properties of the function 7[\/? ( /]Z‘=O) . This

function, when integrated over the velocities in the set {N-s},

becomes

r s-/\// ¢

J(dﬁf—)ﬁ_ ]éf/lz%o) :Z(fﬁ(l/)zao) (6.2-1)

where the function ]gs?/}f=o) is a function of velocity
which is symmetric to the interchange of any two velocities
in the set 1S-/} . However, the operator /(@ (/|t) may not
necessarily be followed by a function of this particular form.
For instance, in the second term of the solution for Zg W{/IT)
we find the quantity

{n}
/ N3
2 2 7 : . 6.0-2
N {;L(ﬁf}g(’lﬂ[’}(’IT)(%‘;QW)K,%@(/Q/IT:O) (6.2-2)

It is important to remember that the operator L{{,[ ) con-
tains derivatives with respect to A7 and /Ui . With the

N U —
condition that the functions 7[‘ "({V}|t) vanish as ; —> o

we find by integration by parts

' N3
J‘C//w a/”ﬁ L(ﬁ/)@(”ﬂ%)ﬁ//’) %)Q'If)égi(/g"lﬁo) = (6.2-3)

The expression (6.2-2) may be integrated over the velocities
in the set {N-S} to obtain
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{N-}}

f(dn‘})N-N Z Z L /y)@/h)@zmﬁg 7) f N3(/g/f 0) =
{5-
N g L)) Pmr)ﬂ/z 5y Grf.. 1317-0)

IIJ

{S—I \U02 u)

Zf{d/lf} L/?Sfl) p(/lf) p(l I7) @(Sﬂ 7')][ _(/?5"’ t=0)

( .Sv-l

The first term on the right-hand side of (6.2-4) contains S°
/
terms of @(‘,{,‘) » the second S(N-S) terms of O(ﬁ-) . If
S << N the second terms dominate the first and we find

J(dnf) W ZZ L({/)@(IIT)P(IV P{ 177, 7 (/glz‘-o)—

7 <J %, 4 J
{s-}
Zﬂdm L/zsw) p(/ﬁ') p(zl?‘)@(sulf)f_,,,(/zsﬂlz‘-o) (6.25)
.2-5
+O(3)

The right-hand side of (6.2-5) contains (S -1) different
terms. If each term 1s examined individually we find that it
is not symmetric to the interchange of the velocity n"f; with
any other velocity in the set {S-/} . Nevertheless, the right-
hand side of (6.2-5), taken as a whole, is symmetric to the
interchange of any two velocities in the set {S-/} , by virtue
of the sum. Finally, we note from (6.2-3) that the ; th

term vanishes upon an integration over the velocity /17;'

Thus if we write

f(d/lf)N ZZL(J)@NV‘)@MT)@QW/D (lf/ll‘ 0)=
{s-

i< (6.2-6)
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S/
function f/?/ (/i7) has the properties that (a) it is

ct
o
[

not symmetric to the interchange of the velocity /-17; with

any other velocity in the set {5-/} and (b) the integral of
S, ! N

/7/ "(1i) over the velocity /V; vanishes.

We show that the operator @( /N-') s when followed by
a function a/ (1) which has the property

N-S S,/ s} S/
j(d ) X(/) = XI’ (/): Z /(I ’ (”l‘) (65"2'7)
F .

does not reduce to the Landau operator B (/lt) upon an
integration over the velocities in the set {S-|} . The
expression (3.3-5) for @{,[70) i1s used to write

[ 4

j(c//r;)w Bup) ") -
N/

:J((d/l-;)N'/{ 5/‘ _{/L

.*‘ o~ —— -—— ey
P TP sy
DA e LU U T }
;G prRI OHR
ﬁ/(/y- /Ou 5 70*2 /20//'

where the integration (d/zf) is over all velocities except

/32' . The first term vanishes by the;condftidn

- N,
f(o{n‘})N I Y =0 (6.2-9)

St
which follows from (6.2-7)and property (b) of A/ (1}¢) + The

second term does not vanish; we find
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a1

(/ _; Z: L.D-*(u) __3/11 (,) - e ZD/{(I) C{ A; (117) (6.2-10)

(di) , o =

J ; /Ju/\’ r /On/{ Y ]OH/(/U’ I]O+1 A
where the condition that the function é/ (/) vanishes’:atibhe
boundaries of veloclity space has been used. The third term
when integrated over all velocities except /—U/t reduces to -

. . NI
J ) Z‘jlz;gz‘) $Dpp) 8 4) _
; ]OfIA/'/UI" J f*-?/(-ﬂj)’- ]ofz /(-Aé-:
3/ (6.2-11)
iDewy (. . iDe) & )
= fd/u; d/”. K {2 L_

7O+2'/?7-U'7 KA,

7041 0 )(»1KJV'
3¢
However, b:‘ (;) 1s composed of two terms, and we find from
3,/
A ’g) =57 v,//)+A !,/“) that (6 2-11) becomes

/01-1/‘(/2/" ‘,/ /O+ /(/U' /0*2 H/U‘

3/ (6.2-12)

21),« (') jd_‘d_a ?D/c (i) Al (dlz)
ﬁ*ll\’/)f }C+I/(A/" 70*1/(/2/'

The fourth term of (6.2-8), since it involves the function

4//
37 () » consists of three terms, two of which are iden-
tical.
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Z:Dx(’) . 2Dg ) Z:D,?(J) b/ (f)
+z/{/z/'fd”f MOO%]Oﬂ/(Af/OﬁK/)f 7O+z /(Jz/'

{Drn (”w R ' D) 1D ) % Le/z)
]O+ /(/2/’.} v ,zioﬂﬁ(ﬂj' /OHK /L/'7O+1/{/U’ (6_2_13’)_

4/
! D (1) ~ 2 De () z'.D,—;g) A, (21)
]O*;KA/—JO/M d’vd.(’/OHK/)/ 70*1/{/7/' 7O+z/mf'

We will show (see also Section 3 of Appendix C) that it is
3,/
possible to write A/ "(J‘l/) as the product of the functions
/)a"(‘l ) and ;) Similarly, we can factor /zq'l(.c}/) as
, J / ¢? . Ys A

4 Q! . 6' .
A, (217) =/z, (211) sﬂlz)cﬁg) (6.2-14)

The results (6.2-14) are substituted above to obtain

§@w)™ Ruie) ¥t -

_iDza) () A (m)
: di: === 1+ L (Rp)+ YR 0)* - -
)o 1K, /on/mf ( P ~ ) (6.2-15)

ML) - ‘Dz 1) A (2//) . . Q. .
]O*?/{Jlf oz, dz;O*z/(/r/O*z/(/y- (j Q[(/Z;O) 31(&20 )

where we have once again used

Z.(K;O) ﬂ{ Dz (:)90(/) (6.2-16)

+7/(/U'
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The two serles on the right-hand side of (6.2-14) can be
summed and the result written in terms of E(Z]o)=1 "L(/?,;O)

as
C ; / » & 2-17

where we have introduced the new operator

. Dz - 1
S (1i)p) = E_Z)F,(’L J?f?f’?‘ﬁ’_’)_,_.%o' R7 fd@ﬁ*’mf (6.2-18)
e WP\ Py T (o RE)ERD) )T ERp)

We note that S/? (1ilp) may be written as the product of

three operators.

S); (/,2'170) = Z,? (11p) fda’;‘ Z{.?(iip)é]),? (1) (6.2-19)

The time behavior of the operator S/? (/';'}t) is closely
allied with that of _@ (/ /1-) . The primary difference is
that 1n S/? (4 ;‘/70) the poles (E (1?'.70))" are double poles.
If the growth rate fot an unstable mode is b% » then in
the 1limit as '(' -» o0 the first term of the operator
5,}(45#) grows as C‘rf)’fiL and the second term as z‘e*«’ft .

The operator ,5:2.( 11 }70) was derived on the basis that
it was possible to write /7,5)/(/})') as the product of /1,9'1(/“)
and S-/  functions ¢ {) . We show that this factoriza-
tion follows from the factorization of the initial conditions.
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We have from (6.2-5) and (6.2-6)

S,/
A, (1) =

_S-/ -
- Jelig, L) (o) o2 iy s~1z)f o (isHlt=o)

S+/

(6.2-20)

We discuss 1n Appendix C the product of a single operator
g)(//t) and a function f';v}i(/) integrated over all but S

velocities. The extension to the case of three operators 1is

straightforward. The methods of Section 2.4 of Appendix C are

used to write

s-
f(d/rr)” 'Pmr)@(zm &O(sum/” (isalt=0) =

sw 1 ) S+I

§+,3

- 7D (/lZ‘)PMT)P smt)/i.. (1iswlt=o0)

ch‘ 'Svt

S+ 3
If the function. /7? (125#1 | Tt = 0) is written as the
SH

product of 7{_(;;{;%” (1{5+/]t=0) and S$-Q functions of
velocity gf/g) and the result (6.2-21) substituted into
(6.2-20) we find
S,/
A, (113) =
( 3,3 (6.2-22)
( d/LrL(g/)P(/lz‘)P‘alt)Pgl")ﬁ (/g,/t-o,)gﬂfs) 50/4) x40,
thus Justifying the statements made earlier that /z (/lz )and
A (/ !) coitld be written in the form (6.2-14),
S,/
In addition to the function bj (1) which comes from the
second term in the solution for hlev'l(//f) we find in the third
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term a function of the form

NoS S,! {s-1}
[/ o= o-3Y ki e
I#)
where the function /‘.2"// N 01) has two unsymmetric indices in
the set {5-/} . This function 1s not, in general, symmetric
to an interchange of the velocities /-V: and /-2' . The
appropriate symmetry for /zj' I(/ /Q‘) is obtained through the
double summation in the indices ¢ and o/ over the set {S-l}

The function /, Ui /) has the property that
7 A S
fd/zg Aa (/Iz,j) = jc//g‘ Aa (/I"J) =0 (6.2-24)

The operator @ ( / 70) when followed by a function of the
form of X (/) reduces to yet another operator after an inte-
gration over all velocities except ﬁf . To demonstrate this

result we note that

NI

S L0 .t [l " = 0

70 H/?ﬁjj’ B 70 +iK /I_f

(6.2-25)
S‘(O/_; Zi 2 (1) X - Z.DK (/) (d/u-) Xgm(i) =0
) o o /'(‘/z/—]o+7/(/zf 7O+a/(/zf 70 IR,



- 85 -

by the property (6.2-24). Thus, the first two terms in the
expansion f(d/z‘r)N'/ @(//70)22 N'/(/) vanish. The third term
does not vanish. We find

2Dz ) (d" J_QK () /IQ (414, 22+A (,//1,/)

(6.2-26) .
]o,-e‘f(,z ¢ 0//u+z/< /zf 7<)f2/f/1/‘

The fourth term is

iDz(z)J‘ o DRG) i e )
7o+z'/?:ﬂ/ O/MO/’V 70+2/(A/' /ofz/(/zj' g

4/ ) g1 . 4! ‘
Aa (£147) +Aa (1//4) +/,&(1/;‘4) (6.2-27)
X A @ - B0 R (017D
7Or2' /?’42
4/

It is in. all cases possible to write the function /7 ( j)

as the product of /6 (/I’/f) and the function gﬂu}) We
continue to higher terms in the expansion of @ (1] 70) to
obtain the following result

J-(OI/U') P(/IZO)X(/)—"D"“)JO/*‘ ?D/?‘” /za (el /ai)*% (le,l)

1KY .270+2/(/z/' 70*(/(%

(1 +L®Rp) »3L R p)++ )

3/ 3/
ZD“(/) gﬂ(/) C/—‘ dir d_, 1D (3) 1 Dg (/) A Iﬂ/);;j),«AR (2141
7O+2/‘(/U‘ /U- 1}0"?:‘(”/'70*?/(/)/' 70*2'2@ .2-28)

(j +JL ("‘?;;0) *7’3[.&(/?,70) Vi )
()
= S; GRIFIR) A, alig) » A7 taijn)
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where we have defined the new operator

(I) ) j ..aZDK ()
S: (/1/ 7 ) = /213;(‘ 1) ?.D‘(/)(/(/) /70,,/(/7, ) .

R TP \JOre KA, (70+e/{/v)€(/<,o) (6.2-29)

f DR YY) f %

ﬁ IR J L0t iRy

€, 70) ER p)

Note that we can write
(1) . R R )

S;; (11710 = E(/yo)fdzg. Eyio) [dif PoiodD, i) ) (6.2-30)

]
We can continue and consider the function a; (1) which

has the property

{s-1}

far o =¥ o ZZZA (1174,4) (6.2-31)

1#/#8
where Aj'(/lz;/;!) is not symmetric tc an interchange of the
indices 7 , o/' or { or toc an interchange of any of these
indices with any other index in the set {S-/} . The appro-
priate symmetry is obtalned only after the triple summation

over 7 , J and _/ . The above methods may be used to write

y 9
N-1 NI @) /13 ("’//j;j) */{3(7'/4//;1)
f(dfl—;) @(//p)é (1) =o’?5; (/,z'/j,[l/o) v (6.2-32)
*A (7 {,1,1/)
where 2D (1)
S(Q)(/ il ) (;_DK ) Z;Dg(/) w(/)fdy;pﬁﬁﬂf .
< J’ 70 70*2/(0/' 7O+1/(/u')€(/(70)
DY) I DR (%) i (6.2-33)
jd,/pfe fy’ JjéﬁZﬂ/ LR

€ (%, ) E(K0) ER L)




The factor 2 in equation (6.2-32) comes from the property that
) ’ .

the operator S (4¢ j[ 70) is symmetric in the indices / and

# so that

) Q) 4/
S‘ (/,zh ﬂl;o)/z (11/41) ,S/; (,;%glf) h“’%j (6.2-34)

l3‘ 14
41
even though A3 (2}/,5{,1) 1s not symmetric to an interchange of
@
these indices. We can also write 5:? (/,z}j,,(I]O) as a product
of '//%.D(/o) and .DE- operators.

Q) :
S;? (4il44 I70)‘<i)’},.<?(/ ‘/D)f"/’ff EQ/PM /72?{"7’7") fﬁ?{;}p)pinﬂ; yBw) (6.2-35)

We can continue to generate even higher operators
gf"’a [{,{' jl - ,;/70) . The operators may be arranged in a hier-
archy with 7,2(- (’IZD) as the lowest member, S o (4 70) as the
second member, :S,gl%/,z‘jj'lzo) the third, and so on. These operators

have been tabulated for referemce in Table I.

6.3 Equations for Operators

Each operator of the hierarchy is related to another

operator by a differential equation. We start with the operator

E(//p) and multiply it by 70’*?'/? 27 to obtain
o//z‘}td
A

(preka) Puip) = 1+iDy0 o) E@p) (6.3-1)

If the operator 7}{3(//70) is integrated over the velocity /27
we find



. J 27
N _2 D) ﬁ*i@
S()//Z{Z-(?(//P) /or; (d +IR A ) E(/?:70)
_dw (6-3-2)
/Ow/( v
k_\—.\,f//

where we have used the definition (3.2-24) of the function
(C:(/?:f)) . We see that the second term of (6.3-1) may be
written }D,?(/)qﬁ(/)fd/_vfg(/lp) and equation (6.3-1) becomes

(70*?'/?‘-/??)7,‘(9(/:,0) ~D (/)gﬂ(/)fd/?f,’ E(//;o) =7 (6.3-3)

The right-hand side of (6.3-3) comes simply from the initial
condition for 77?(//1-) which is foun#&l from the relation for

Laplace transforms

S Bun) =7ﬁ; 2 2 t1p) (6.3-4)
We find after an inverse Laplace transform
(é— * M (/))P(/
ZC-?(/IZEO) =1

II

(6.3-5)

where

Hy (1) = 1Ky -Dpt1) gﬂu)}a’ii
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The operator *//? (/|t) satisfies the linearized Vlasov
equation (see Chapter 3) where we have linearized about the
distribution function at [ = O.
The same procedure may be used to obtain equations for
other operators of the hierarchy. Thus, if we multiply
%(42’/70) by 7O+2'/7*/?'f,> and rearrange terms we find

(o ¢ '))5,} (4i1) =5E(il7o)2%(/) (6.3-6)

where we have introduced the notation

E(’lf’) =fc//z? 2(.9(/170) (6.3-7)

The right-hand side of equation (6.3-6) for.)(;ilo) contains

a source term which is the product of the differential opera-
tor z)@( (1) and the density operator _7/.(?(2‘}70) . The initial
value of ,5:? (17]t) 1s found from a relation similar to
(6.3-4) to be

S (4i1t=0) = O (6.3-8)

We find upon taking the inverse Laplace transform of
(6.3-6) and using (6.3-8)

(8% I (’))Sz ("“T)=g°(z'/r)£D,?(z) (6.3-9)
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The solution of the homogeneous part of the equation (6.3-9)
(wnich 18 2(/j2)S, (4|1 =0) ) vanishes by the initial condi-
tion (6.3-8). The particular solution of (6.3-9) is the only
non-zero contribution.

The same type of result is found for other operators of

the hierarchy. We may write in general:
*/L/-‘(”)S q{f walt) = Sm(flz)zji (1] Z)zD—-(/)
(6.3-10)
(n)
Se (43144l t=0) =
(n)

The source term in the equation for ,S:.(.. (17 L_/“ £, /Z‘) is the
product of the differential operator ; Dy (1) and the next
lowest operator of the hierarchy.( S’: -1 1, j j R /t) )
integrated over the velocity Ay e Each operator of our
hierarchy is coupled to the one which comes Just before it,
80 that the hierarchy is bullt up from the bottom. The
lowest operator '@. (1 jt) is uniquely determined by the
differential equation and initial condition (6.3-5). This
6perator is then used to determine the higher operatér .

Sz(1i|t) from the aifferential equation (6.3-9) and the
initial condition (6.3-8). The operator S (1,71 '[') is then
used to determine the next operator S—a (/zijh“) and so on.

The reduction of many terms in the solution is not quite

as straightforward as we have indicated above. The reason for

the difficulty is that the solution (5.4-4) contains not only a
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term where the single operator (,/V ( )z‘) operates on a
function (Y' (/) but also terms in which a product of these
operators @(/if) @(&}z‘) p(ulz‘) is followed by a
function of l) wave vectors 6/ (/a v) « The reduced
function b/ ({ »}) has the same properties as does X (1)

1.e.

{5}
51/ ({U}) ZA ({v}lz) | (6.3-11)

80 that the term when reduced contains both the operators
Z(.?(/]t) and %-(42'/1‘) . However, now there weill be
such terms instead of one as we obtained earlier. The tech-
niques that are used to handle these more complicated terms

are discussed in Appendix C.

6.4 Factorization of Initial Conditions

We assume in all that 1s written below and in the follow-
ing Chapters that the indtial conditions may be factored. We

S,
have discussed in Chapter 3 the reasons for writing 7[’ A {D}[T=o)

as the product or S-v functions of velocity sﬂg) and a
function 7[' ({ v}/t=0) of V spatial and velocity coordinates.
We now assume further that the initial correlations between
particles vanish, and that we may write 7[’ z)"J({z)}/z‘m) as a
product of U single-particle functions. This assumption
represents a limitation upon the analysis analogous to that
imposed by the use of the Mayer cluster expansion (see ref.
(26) and Chapter 1) in the BBGKY hierarchy. However, here we
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impose the restriction only as an initial condition. We
show in Chapter 7 directly from the solution that in a
collisionless plasma two particles which are statistically

independent initially, remain so in the limit of large times.

6.5 Reduced Solutions

The first three terms of the solutions for the single
partiele function 7[‘ (7]t) and the two-particle function
][‘ (1a]t) are written below.

t
e 010 = RO 1t-0) Je Szl T)Ja//zf L, og/r)/f 31t-0)
+de5/;_: (421 Z“—T)fd@ L(:/') X

:z 3 3\
5({/17‘)}{7 (Jlf—o% S(/!Iffgfd/w[_(/m Fl?z(/!mh")ég?(dmiﬁo)

)J 178 %m
3

2
x{ + Eg(g/r)f (o,lr-o)éo‘rS(zmﬂjdnf/_om Fii

L (Umir )]C 2!mIT o)

s (n/r)f 07l r—o)Ja/fjig fr7 )jd/zfigm)Pg_.QImﬁ)f - (omlt=o)

w

()
+fdf5} ( z‘/ﬂ/z“-f)fd/z;} L))« (6.5-1)
(o] !

? ) 2 3
AR ’3/’7)7?7:,(’2/” o)fdf fo’/zf L(Im)f&{,(m}/ //&(]m/tzo)

!

4‘

+fo//ﬁn';é(.ﬂm)z(?§? (Zm|T) 1;_.(2102 Z‘-O)Jodf';/?; (yf )T)]p (JITC)

+ . - .
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(Q{/-If)é-‘;_ P (95'/'[2302[011" % (LH-1") fd’% Lom ) ) (tml )2{’ Wmlt=o )

#i Ko

‘L’;s

?f@ (/g/lf)}gf-‘ (f-y/t-czldf 5‘ (If/fT’)[djV‘ L/IM)P/?- (?]mff’)ﬁgdﬂmifao)

"y x,;(/:)zlf),éz K(/az/f~ol£df.§,bﬁlff Ja’ar L Jm)? Zn(’ljm” )fj ,?279""”"0)
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+|dr R @itnSy (ilkitr)fdig Lops (6-5-2)

(s 1

/‘Z> (/.7: f)f (/gylf-o)fa‘f fdax [(Im)P@(Jml‘f) f (4mlt=0) }
_/dv L(«Fm)P,‘-')"(&zfmlT)f _ (Qutm T'o)jaff P- (JIT‘),{ (yit=0)
T
* joa’f SK (/,i/z-r)fdﬂ;}Lg,‘)S::(.?,ﬂz‘-f)fa’ﬁm L{am)x
Y g T
ZZ)"E (13817 );g E(/g'ﬂﬁo)fo ofr’ 7/??; (am|1’) é;m(amlﬁo)

X

g y 7 . pR
+€"/7fn(&w mit. )}g.-z,(ﬂzlml = O)Ldf 'é?% (é[l?‘)ig 7 (1jIt=0)
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22
The term {7<2} 1in the solution for ZgEOQIt) 1s 1dentical to
19

the quantity within the brackets { }  which precedes it
except that the indices 1 and 2 are to be interchanged.

The second term in the solution (6.5-1) for 7/.5: (/1t) 1s
characterized by a single integration over time. The third
has five different parts, each of which contains two integra-
tions over time. Three different operators are present in
this term. The fourth term (not shown) has 46 parts, each
of which has three integrations over time. The operator

), ., .

S,-(j (1¢ IJ,I | t-7) appears for the first time in this
term. While the formal solutions (6.5-1) and (6.5-2) are
valid for all times, they are unwieldy. We show in the
next Chapter that many simplifications may be made in the
1imit as time becomes large.



CHAPTER 7

TIME - ASYMPTOTIC BEHAVIOR OF THE SOLUTION

T.1 Introduction

The solution (6.5-1) for the single-particle distribution
function is a general solution of the hierarchy of equations
(5.3-4). We study below the long time behavior of (6.5-1).

If the plasma is unstable each term of the solution has a

part which grows exponentially with time and dominates the
remaining parts in the 1limit as time becomes large. The form
of the solution can be greatly simplified if only the dominant
part of each term is included.

We determine in Section 7.2 the asymptotic form of the
solutions for the single-particle function f?(/t) and the
two-particle function fﬁ oQ/t) . We then show in Section
7.3 that (time-asymptotically) the solution for 70 (/1)
satisfies a linearized form of the Vlasov equation and that
the two-particle function is egqual to a product of two single-
particle functions (two particles which were initlially statis-
tically uncorrelated remain so). We note in Section 7.4
that the terms of (6.5-1) which represent corrections to the
first (Landau) term remainssmall for some short time (to be
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defined) if the amplitude G~ of the initial disturbance is
small. Pinally, we observe that the assumptions (a) the
pPlasma is "collisionless", and (b) the redistribution of
energy throughout the wave spectrum may be neglected have
been used to derive the hierarchy (5.3-4). Assumption (b)

is not a necessary one. Without it a solution for 7/? (/It)
could still be written in a form similar to (6.5-1). However,
the solution would be even more involved in that the number
of terms would be greatly increased. In order to avoid the
complications that arise from the increased number of terms
we have made assumption (b) and have argued in Chapter 5
that the solution should be valid for some "intermediate"
times. We show that assumption (b) requires that the initial
growth rate of the disturbance be sufficiently small.

7.2 Time-Asymptotic Form of the Solution

The first term in the solution (6.5-1) is identical to

the Landau result. We assume that for each wave number /?
in a certain range Ai? there 1s a single mode which grows
exponentlially with time. This mode is represented by one of
the zeros of E(X 70) The remaining zeros of £ (% 70) (for
the wave number X ) are assumed to lie in the left-half

70 -plane and so to represent damped modes. In addition to
the collective modes, there is the "free-streaming" mode
which arises from the pole at 7o==-zk’ . We denote by'Z@(O
and 7?.. (11-i%, /v-) the residues of _P(/bo)/’[/ t=0) at the poles
7QA and -a@ respectively, and write the time-asymptotic



- 97 -

behavior of the first term as:

PO, SOV Y

. ot R
L %(/It)é(/lz%o) =R 0) o™ +Reti-ik)e UC T (7.2-1)

We need below both the result (7.2-1) and the integral
of (7.2-1) over the veloecity /2_/7’ . If 7»?;2 (//—17,'/7}) is an
absolutely integrable function of velocit} then the second
of the above two terms decays to zero in the limit of large
1:1mezs.1‘5 The asymptotic behavior (of the integral over/—vj' )
i1s determined by the first term, and we find

t-mf"’p(”l‘)f‘(/if-O) NA xE (7.2-2)
where
7?-:- fo//zf R (Flpp) (7.2-3)

The second term of the solution for ][7 (/1) contains
the factor

S dz; Liy) _,f;;) (/lf)[g (//Z=o)gglr)é ( It=0) (7.2-4)

which we write in detail as

-Z' ol a R .
(3/7)3fd/(/(7/(/(l)9_/1:2 5(4};/7‘)/;5 (/If:o)'[&y:z;{ ))f:,glz.go) (7.2-5)
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The time-asymptotic forms (7.2-1) and (7.2-2) for the operators

are used to rewrite (7.2-5) as

i ’ A 77 ﬂ9?7
e | R RV 55 (Rest) €% R 1175 e JRE" (1.2-6)

The factor (7.2-4), when it appears in the solution, is
always preceded by the operator ZZZL(/) (see the form of the
operator S (/zkp& in Table 1). Thus, there are some terms
which 1nvolve the second velocity derivative of the exponen-

tial 8-’7\,"7’71’ , & quantity which grows in time as t=.

However, these terms are integrated over 7?/ . We require
that the residue K./ (/|-K:1}) (which contains the initial
value function £, (/[t=0)) be a sufficiently smooth function
of X' that the second term of (7.2-6) vanish (after the
integration over Z?I) in the limit of large times. We note
here explicitly that in order for this to occur there must

be a spectrum of unstable modes. Then:

t«»w fO/fV L(J)P(/}T);(/If—o)-/bgIT)/UJIL‘ =0) =
YN ~ -7
(977')3 /{c\) K K %K')'a% @-/(/)Ek-/ eg *
3 (7.2-7)
= /?&_/z:}; Culit)

where we have used:
+

%
- a)/?+a;‘z (7.2-8)

Rﬁ

& -
oy
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The relation (7.2-8) between 7.) R and /Q/_{. follows from the
definition of E(/?VO) .

The function ((/|t) , which depends only upon the
velocity/z_}, and time, is a fundamental unit of our solution.
In order to write ( (/|/t) 1n a more explicit form we note
that the residue of E(/( )) at the pole P=Pz (assumed
to be a simple pole) is 95/%0) (36/%0 ﬁso that

(1]t=
?‘/?IV(K') fd/)f _L_/___Ol

7!2-('/(/) = ( - )(7:;*}?” (7.2-9)
e TERA; 3]5;,)
and (using £ (X, 07) = 0)
(/lt‘-o)
= fd '70"'1-2/(/1/'
' (7.2-10)

°’7O,<

If the relations (7.2-9) and (7.2-10) are substituted into
(7.2-7) we find

o P/mr-o)/ ot
! a/zf Y ,o"ff-z/( T =K
Clrte) (97)‘)3&/zf fd fop+iRAE V(K) /asl ¢
307’ (7.2-11)

o %t
Ejo//( Cortn ™"



The asymptotic behavior of the second term in the solu-
tion for f (/]t) 1s determined by the asymptotic behavior
of the product of C(r17) and 7;(;;7/)*{;,1#0) . Thus

¢ Kf

| t,wfdfg(/elff)jdml(/ ZD..A(/J/T)/_,_.(/) |1T=0)=

ARG (7.2-12)
N t TQX“/)Z‘
= [dR (et S5 3170 R ) G €
b ?

To evaluate the convolution integral we take a Laplace trans-

form in time and rewrite (7.2-12) as

Sd/?' ¢ (110) Rz () Ge ) (7.2-13)
P lpare)

The method of residues 1s used to take the inverse Laplace

transform of (7.2-13). We have noted in Chapter 6 that the

unstable poles of the operator ,SL (11 /70) grow in time as
AT ana 7™l However, in the 1limit of large

times the poles of S.; (4,2 }70) are dominated by the pole at

£ 74-1-0’22//2-1 which grows approximately as E’ b/ is some
average growth rate in the AKX interval), and we find

. d .
f_mfafr (/z;f-f)fa/n,rug,)fm (/g-//f)é@ogmo), oy

fo//( 5 (/2 ]O;(* +Q&-/)P (2) C—*/(/) 70,(1 282
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e note that the right-hand side of (7.2-14) does not vanish
in the 1limit as t—>0 as does the left-hand side. If the
terms which arise from the poles of ,S;; (11 }70) had been
included in (7.2-14), the right-hand side would also vanish.
It should be remembered that the relation (7.2-14) is correct
only asymptotically in time.

The asymptotic behavior of the third and fourth terms
of the solution for 7/((‘; (r/]t) are found in exactly the same way
as was done above. We see from (6.5-1) that the third term
has three parts, each of which is similar in form to the

second term Jjust discussed. The third term may be written as:

t
. (B O™ .+.’2&~:)Z‘
(a8, il z=r)fol Lypfar” 7% TR,
() )

x { R @Ry 19, (-2l #@%n) By (0) Gt

Re RN G 0l 2 Ry (1) Gyt)
J (7.2-15)

R ) Ez ) 5,5. (0 L5, *2%1) 7:33, () G f/)}

- a/
We note that the operator L(‘/’/‘) replaces £ by A and

e

-/
/5- by -4 so that in (7.2-15) 70/(77%_ = ,?ag-(-/ . Ifa

Laplace transform is used to evaluate the convolution integral
in (7.2-15), we find the asymptotic behavior from the pole at
70,6-;4-0?&2./ +°?b/’-(-q (the operator 5:? (1 2}70) replaces /{1 by X 7)
with the result
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T
/ !/ ;.
I I O G e I
YN ,chg, E
R - 2 e ; / -7y
X(Z%(;/ /'7“)7(:/ lf-c/ d7“ ) (/,4’/"/"'—7‘1)}{471(//;1)/3_;.,\(/m; f7 )f (et
oG Ay

3

AJ
fb

+’441( oLs Ofdf &(2,2 ff)ﬁ)’a{;/.lzm) %(L{m 7“},‘.‘..(zim =0)

3
i (n/r)/‘,ﬁ (i|Z=0) jdr.S; (kb1 jo@ L ://m)z—)*- (,ﬂmlf')é; 2 gpmlz*=o)}==
:jd/f dE'SI;- (/12.17% *2%1*&%,)[2,(/) e@/{,ﬂ?&‘m&bf-{ﬂ)fx
N (7.2-16)
"{71}/ )R S 1 0h130+28) R ) Co )
*E(-‘/ (/)R’Z-(-l% (2,,@//9(7 *v?é'll )@: (f) (/:‘c"’ {2)
Rt O ) S ;4 O 3%en ) Fg1l0) G 9‘)} :
where we have defined (compare with the definition (4.2-6)

of /_((/’/) )

L) = s RVIK). % (7.2-17)

(&ﬂ)

The fourth term of (6.5-1) contains the factor

Tros Olf {ﬁﬂ/’[ (‘//)7)_,.;(/;/ -f }jd/y Zﬁm)? (/gmz 7‘)]: (12/¢miT=0)

3 s 5
+ f a’% L (im)g;i ,-(‘- (mi I7 -7”% / Q/)-//?Z:D’Zn(/gﬁm)glzn( /é}'lm It= o)}
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Y T 92{-”7,‘ g“’rl
:fdf‘(‘d/{ Zr%(ilf)é(ilﬁo)la’f'{ G e “ C,?,,u)e"? ‘

+ Cdmlp)e C" /) QX/?If }

(QB/II-QXH ) (7 2- 18)

:Jc/ g '(alf)f (1t=0) Gy Coutr) € (Ob;z" Q%o

The convolution theorem for Laplace transforms is also used

to rewrite the fourth term of the solution for £ (/jt) .
A

The asymptotic behavior is determined by the pole at

70 = 70,—(,- +QZ/§, * Qélf(.. ’ » and we find
5 5
£ mja/rS. (1 zlr-rgfa‘r ﬁa&ulgﬂ’, e )fa’njf; L(!m)z_; é@:fm!f')é(gm/ﬁo)

jo//u /_{Im)/ “(/f//z// /)ja’n;[/v/)/D (//4'/;1}7 )f g tall o)j

IJﬂL K /n

(7.2-19)
) (08 7% f-ggé,, .
Jalt( dk S (/zﬂ,ovgaﬁ Q) © Al )/?50) Q,(/)Cg,,(.@)(g'é;, ozéfz)

The above methods may also be used to evaluate many of
the terms in the solution for é: ;;(/a /|t) . One new problem
appears 1n the third term of the solution (6.5-2), where we
find a convolution in time of the product of the two opera-
tors ,S’.‘ (/é]t-f‘)g? (,4[t-T) and a function 7'——\ (3,7L17) .
The Laplace transform of the product of the two 54 /o) operators
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is

t
-t . . / p . ,. C ,
Sa’f@f) ,Sa.(/,zlf),% (Q£it) =Q’72JCQ/7O %(,’_2,[79;,70)%(@1/70) (7.2-20)

©

where the contour C passes to the right of the singularities
of S/?Q ,e/?d) and to the left of the singularities of
2 , _
- > - . AN ]
S/(, (/,ZI/O £') The Laplace transform of 7/'(;(1 (12:41¢t) is

of the general form

Gy, 12,141.0)
P
'h ha AP ] 1 =
ere we have separated from 7/’;{2 (3, ubo) the pole ( P et )
which lies furthest to the right in the 70 - plane. The

(7.2-21)

"t
5}8’0 7,(:;_,.{:z (2,2 1)dl = E. (34| 0) =

KK

long-time behavior of Ef?; (13,24]t)  1is determined by
the pole at 70 = 700 80 that the convolution of the two
SZ operators and 7/?;?1 (13,i¢|t) becomes, asymptotically in
time

¢
f;’i’i idfsz(/,z‘lt-f) 5;3 (:z,ﬂz—r)zg

Y
H&

(13:4IT) =

.2-22
zjﬂ,i;i‘a’p'.%(/,z'boo—,o') S/;;(;’»llid)%pl(’qu%)éﬁ (7 )
We discuss in Section 7.3 and Appendix D the evaluation of
convolution integrals of the type appearing on the right of
(7.2-22). ‘

To summarize, the asymptotic forms of the solutions for

' aa
7‘:(/1 t) and /_1__ (/12]¢t) are written below.
%, RR,
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f:’: ,}g.f/!t) = .7%(1)6’%# *J(a//?’% (/,z‘/ﬁz#;g ALNOYND 6(’%"93:?)1'

+ i i @ e *Q%”)t{sz iLps 2% 2p ) s 0)
FZ}(; (5)7?:’,-(-. ‘% (1210272%0) R () 1. (1)

CROReS tipROGn |

[+ Rigr Ry 1S i Vi 708y ) B (0) Culy)

[

) . / /
+ % (/lzlflﬁfab%/f;)%,)ﬁz(l) Q-,(I)%,(I)G—a;—?l *5@')}

22 N
m [, (RID =F.0F @ PR PRt

ta>o0 KK,
o —ay > X“‘/ A N
Ry (2)e” ’ﬁt[ja//( e %% e (44119 %) R 6) G 0)
=t g #2428 .
+5d/(d/( E’O% R 2\')2-{‘5’% (/,z[,ozfaxlf.’)f.)[,—(v(l) x

i P;(: (i)i;;('/ S/?" (/,1’70,2-1 *.76,%:)7?;('/ M) C,?" (’)

X 'FP,-{I (1)7“1’_’,-(-:5/;.(5:2/& +Q%u)7?,—5 () C,;? (i)

_*P,—z/ (/)PZ @) 5_:-"/ ((/,1 lﬁ;zt *Qb;‘-u)}g 2! (1) CXZ‘ {j )_
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* S,:?I(I)(/,é 1ol g #2%p +2du) R (1) Gt () Cou ) (;‘f,g, * 5&;@)}}
R0 (R PG (o ) B C 3
+[oR R o PR +237?’)t{5% (3,110 #2535 )L 2) *
R ()R Sy (3212 R (0) G (2)

X Ry QR % @210+ 263u) Ry () G )

_"'R-‘l Q)R- (l)g ‘ ( Al Q273 //)E-'/ (I)C-sy(')
2/ Vg 020 Ut ) Ka W) ) (7.2-24)

M . . / !
*% (22 L8l oig 2%y +255) Ry ) Cor () G Wz *3 a;-g:)}J
-y e s *+Q02 7+ &-w
*Qﬂ‘;é —l.'df’,jd/( dR 6(7% 77 oL.7 U )tx

i S_q_ (42 /]0,2; % f;%l f.’)é. " 70' )% (2 bo‘)]% @) CE'(’)% @,I 17%*;5%.)7%(1)('2” Q)

B (/I,O,g*ﬁz;f.?b{»+J&u7o')%(qllp’)@:(l)(}?.(Q)% i oy = IRy e) G ()

5% Gl o 2y r2br ) Sy B AIP) (;ng.,;, * 25 By ) G OB, 0y 3 |
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T.3 Properties of the Solutions

Some of the properties of the solutions (7.2-23) and
(7.2-24) for é(;/t) and jgza(/.?/t) are determined
below. The solution for the single particle function
is shown to obey the linearized Vlasov equation (5.3-6)
(1.e., the "quasi-linear" version). To obtain this result
the solution (7.2-23) is differentiated with respect to time
and the following property of the operators (listed in
Table I) is used.

a N a2
5 (uj, -ynlt) * MS? (il 4 4nl) =

(4

(7- 3"1 )
_ (n) . )
=z ZD/E(’) 9%{[0/4?% (4:'{‘7;1;--',Qlt)*2225 a) d/Z,{S/(; (n,z'!j,)ﬂ-v)n—lh‘)

A straightforward application of the relation (7.3-1) to the
terms of (7.2-23) for £(/1t) yields
%,

/ N
(ff ’ ”(f/'f)ﬁmz‘) * z'D-(/);ﬂ(/)fo’/z‘f‘ﬁ(/lZ“) =
= ZD-(/Jc/fjd/U' Rt T{fdflf‘[.(!{) p- (/gl If')]p,_.(/g [t=0)
+ 20 ( /)f dfjdfvf B 1=0) oz L) =
Z?;/e (;1'7‘ )/f’,g,(,zlf‘O)de S-(/ﬂlf?"?fdm L(Im)7z (Limir )f !m/f o)

x +P-(/ If)fi(‘//ll’ o)}df S.(;!/ff}fdy L(zm)zojz-(zlmlf‘ )f,,-(u?m/l‘"o)

Z,?;: f)é (/zl[-o)jdf S-Q,llf f)johrl Jm)Pavﬂm]f ) -‘*Q jmlf_o)
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1.
(.. (..
*ely (/)de o, Q82 [Er) )t L) x

T
‘-Zg) FAA s ff/ = a(/g'lpo)ldf jﬁ'/‘ L(em) Ei (Imlf ') If f([mlz';cg

Hol L ) it it o)Ldr f (O,zr);.‘lg,/r o)
. (7.3-2)

We now show that the terms on the right-hand side of (7.3-2)
are equal in the limit [ — @ to the product of the
functions  iDp()(£(it) - Pw) ana fdﬂz‘]g (1t)

The spatially-independent function f(’if) is obtalined
from equation (2-9) for qu(t) . We integrate both sides of
(2-9) over the velocities N-1, substitute the expression
(7.2-24) for é’;g“(/g;t) into the right-hand side, and
integrate with respect to time to obtain

7p (i) - @) —fa’xzf /_(/a){ fa’f (/.7/7“)75 (/;z/t—o)
¢ A 3
’“foa’f [ gfah‘)é(aiﬁo)ldfﬁ%@z’lf-f’)ja’gﬁl_g)ggg(g‘Wéggoj'lﬁo) (7.3-3)

+Z?(/lr)4§ (/ir—o)jdf 5-(92/2’ Q[dﬂg,)% g(a o,n‘) ik 20y IT- o)]
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The integral of the function - (//7) over the velocity
%
2y 1s from (6.5-1)
( Y NS ,S: ':J‘ - IR
Jlz o) fduf(//z/;fo I=0)r jocﬁja//zf il L) 2 ,/ﬂg,g-,.ﬁo}f..-('r.s-u)

The relations (7.3-3) and (7.3-4) are used to write the
product ZDE(/)@(//t)-gﬂ(/yfa’ﬁé (11¢) > and the result 1is sub-

tracted from (7.3-2) to obtain the following equation.
(_‘&_ « - 3 » — -
S¢ R 0in) - iDg i) B it =

‘ZD,\,(/)fo’ffc/ng/)P ¢ /f)}c (yj1T=0)%

3

3 -
P(zll‘fidf&(zf}"v /Ja’/zf L(zm)f& {eimlr ﬁi_a(ﬂm/ﬁo)
: fd@?%(zilt—r) G oirol L)

. z —_ - , . . I} < '

+8Qj(/)f£)dfﬁqj[@2jd@%(h/@?‘)§ z/ﬁé(z/ﬁo)((ﬂf)ldf Eg@'if)%(glﬁo)
t
-(i]),(;(/)ﬁ/gfL(g)fdf/‘?f(/‘/f)ff(g‘lno))x (7.3-5)
0

(jdfjd/zr»sl;(/z ,?/OI/UZ_(J)#M Q/Wfaa(h TO))

KKK
+ .

The terms on the right-hand side of (7.3-5) are evaluated

by the methods of Section 7.2. In the limit as ¢ - oo
we find

»

| *, b/-‘/f b/
rhs (7.3-5) = Z'D/z(/)jd/?lo/l?” 6(70/?; 0% -?/?")ZLX

X {CP,(/) 7};3(/% Q%0 Qaj?.)Sz (il 2% )Zfz(z') Con 1)
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a4

/

/ . .
* o 55z, i) Syl g2t 2y Ryt Gout)

]

-(CZ'(I))(gz (/)2]70,3 f.?&,}a)?% () C;zl (/))} (7.3-6)

o’ )

In order to simplify (7.3-6) we introduce the explicit forms
for the operators 7% (/10) and f%(éﬁfv (see Table I).
We note that

dit
70’2 *Qa%"*jx/:./,?‘-, i Y
E (g w2%p) (%, =) Ty ) =
jd-* ﬁmr—o)
j d/f 'DA’ ()) w()} %*14‘(]

59%,‘.7&,) i ik g K (90

5 D a)cﬂa) Do) gﬂa) — /2 (i|t=0)

o?b‘*u € (;0/3 *28/%”) (°€/5%) (7.3-7)
5 MMtw
1 70,(1 + ,/IJ’
Q%‘a(&e/afog)

where we have used the definition (3.2-24) for & (%, /o) and
the condition that £ (¥ 70,2)= O . Equation (7.3-7) can be
used to rewrite the first term on the right-hand side of
(7.3-6) in the following way.
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50’/&;‘ Z'(-,? (/113 = 2% +Ja,},)§,’ (/,1/7%-1«93,}.)@- (£) =

Jﬂe*-?&m?&-ww f i Dg () _  iDe) )ik %
E g2 p) | 10 " ppue BT (1 #2putife ) Eqop k)| 2pr

e s8R ) 0 2
2% € (g +24y+2%n)

{ J iDp () di} i De () ot

( E (08 +2%zr+d%ze) - E (L, +.7b72~)) Lo + e ik T
Q 3;?’ E (70,3 +2%pr) £ (7013 +%p f-;)b//zn)

Rz
o).

Z-D.&(/)W }

R
(%Ko

10011 2¥ e KA, g rQXR+ik T
E ( 70’(4 *2 XE‘I fgéa) E (70(] +e?%’)

5 DR, () i 570 DR G) dif }
{. (7.3-8)

One can show from a relation similar to (7.3-7) that

J' ¢ D) oIt
*-’?éftfﬂﬂ(wziﬂf ~

€ o +:za’-,) ~ (X, +Ja,’2,Jq’arS, (LI 252 )R 1) (7.3-9)

Equation (7.3-7) 1s used to rewrite the second term on the

right-hand side of (7/3-8) and to obtain

fo/n'f,‘ TR U110 +2%:2%0) S (18110 2% )Ry 1) =

=G TS e R i S e IR (1
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The two terms (7.3-10) exactij cancel the second and third
terms on the right-hand side of (7.3-6). The above methods
may be used to reduce other terms on the right-hand side of
(7.3-6) and to show that each term is exactly cancelled by
some other. We conclude that the right-hand side of (7.3-5)

vanishes and write

o s B S éf(/’t) - _ -
(aT* +2/€‘/U,“)}I.§(/Iz‘) - K VK- 3o /u;)/'g(/h‘) =0 (7.3-11)

This is the desired result.

As a further property of our solution, we now demonstrate
that two particles remain statistically independent in the
limit as ZL—* oo (we assumed in Chapter 5 only that they
were independent at 7 = Q). The solution (7.2-23) for

/3. (2It) 18 multiplied by the solution for 7{‘ 1t)

% ,
and the product subtracted from the solution (7.2-24) for

<42

£ (4a]t)  to obtain

2%
foz (I~ F ity =
é {\
= jdrsng/t.r) comg(z/r)gmro)gw/z*-ﬁfdr'@Qm—f’)c‘mlr')zgmr')éa;m)
o (o} :
< 7 _ > rennty [ e
| aenCanguangeRuenfar'S, Giier)Ca R it

.,‘_ft g . S . )/7‘2 . [(’ 7 / )‘f’ "‘C )j;flc{lf')]
7 S NN GG (oe]t-o) (//ﬂjgf Calr) +C@in|ar'Cy
(7.3-12)
t ) ¢
k( Ldfﬁ,} Giltr)C (/IT)%(;]T)%U/Z‘- o))( £o/f‘5,'§ QLtr)Ca /7)@ (z/r);é(,;z/z*= o))

+
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If 7[“@'& 12lt) =£¢ it) £ %) then the particles 1 and 2
I E;/-(; (/21T) ]/-;‘(/l )]‘é?.(;” ) p
are statistically independent (see Chapter 2). The methods
of Section 7.2 are used to rewrite {7.3-12) in the limit

t = =0 in the following way

>~ > 0 +2 oy #2 )t
7,%1 (Rl -é(/lt)é(q;t) =fo//(o//(”eé%7% 203 120 s

x {;,—ﬁ'\;lo}o’ [57(/, A )7%_6) G ")E(JW)% RNy %) Ry )G (3)
+7/§ ( lﬁ?) 70,?‘;*:)4(., +Qb},7d).% (i )ﬂ‘,a?&,’;,)@(i) C:?, (I)%(QEI?O')%(I)Q. Q)
+( %" jjl;‘?,‘)‘% (il 2% o AR ) G u)%q@o’)l’,z ()G (-‘2)]

(7.3-13)

The sum of the three terms which involve convolution integrals
on the right-hand side of (7.3-13) equals the fourth term
which contains no convolution integral.

We 1llustrate the calculation (for more details see
Appendix D) by considering the simplest part of each term . in
(7.3-13). The operators '@I (//70) and SE(/,z'/;o) consist of
two terms (see Table I). If we define the lower case opera-
tors O (/Jp)  and L (42}70) to be the first part of
th ator A d ]

e oper 8 7,9(1(/[70) an S/Z(/’I/f) » respectively, then
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b
7‘3.(7 (//70) =7Oré?,-/?/'7

di%:
y = 2DR() JOriK:

. (7.3-14)
' T prik i ERp) (5—F)

/-
A
4

The simplest part of the first term on the right-hand side of
(7.3-13) 1s then

/ ’ , ’ .
arz Ldf’ i 2110 7m0 w10 P 0) G (1) ¥ (7.3-15)
*f P By 3R #2%) R (£) Gou (3)

We use a relation similar to (7.3-7) to write

- P iDrw) Rz
(/)Zl oz % a/-‘/*'n?a’-m" R 2) = . L
A?I 70;6 70 2 4 K P LA (7% 'I'P‘G i'_?a;?/ +Qa’/2,,-p{*je\ﬂ—l;w fQ&I %ﬂ —P‘)

* __ iDn@Ry (7.3-16)
RCRE X Rresimet oo

The relations (7.3-16) are used to rewrite (7.3-15) as

4_}#)/ 2Dy (:)f?}, Cer) D) ﬁ,a (g ()
e (P2 Db~ R N2 2oy KR TNy, Ry R A N i) (7.3-17)

The integration over 70' is performed by closing the contour

to the left at infinity. The integrand vanishes as '/P'3
along the path of integration at infinity, so the only contri-
bution to the integral is from the pole 70’:-5,{3./}; inside
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the contour. We find that (7.3-17) becomes

¢Dg 1/ Rz, Cz) ¢ D2, (AR, ()
(108 08, 2+ 2+, 7 g, W 2 2 SR N +u R NGpe) (T .3-18)

The same methods are used to determine the equivalént parts
of the second and third terms on the right-hand side of
(7.3-13). We fina:

!Dg, (/)ﬁ;; Cz) iDg ) 7?,2; Cer (2)
(1% 198~ g Fel o R Mg 7200+ g R AL N #205iRATN) (7.3-19)

and
—(._/_ + " ) Z—DK; (l)RIO C'.’U) ?.D/(z (2) R/(z \_-*1/(3)
2% Qb/%” (]q,:+ 2 +_73,%v+13,%+121;+1/§/b_§)(7%z+_20,’?+3%_‘, +1z/)5)(7q,; ,«_z‘,g./l:}z ) (7.3-20)

+(/ )_. ¢ Dz () Rz Ce) i Dz, QR Cen(
2" i (0 2%+ 2 RAN g - Qpu) 0, + By 05)

The sum of the three quantities (7.3-18)-(7.3-20) reduceszafter
some algebralc manipulation to the following

! Dz )Rz C21) D, )Rz (o Q) (7.3-21)
(Qb:?/ )(Q X/?”)(f/?,‘ *-?a;‘g" H/(,‘/U,')(’o/?: *d bj(ﬂ +} /(.2/)6)
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The quantity (7.3-21) is exactly cancelled by the first part
of the fourth term on the right-hand side of (7.3-13).

The above techniques can be used to evaluate other parts
of the terms in (7.3-13). We show in Appendix D that some
parts of the first three terms cancel. The inverse Laplace
transform of the remaining parts may be easily evaluated by
the method of residues. We find, after some algebra, that
the first three terms of (7.3-13) exactly cancel the fourth.
The same methods can be used to reduce other terms of the
egpression for 7’[?: ;j(/al t)-é’(/lf)é(.?lf) . Once again, corre-
sponding terms are found to cancel one another. We conclude
that é;;;(/alt) = Ag(dtizgla/t) , and that no correla-
tion between the particles 1 and 2 arises if the initial

correlation is zero.

7.4 Order of Magnitude Analysis
An order of magnituée analysis is used to estimate the

conditions for which the asymptotic solution (7.2-23) for

é? (7] ¢) is both a valid and a useful approximation
to the solution of the complete hierarchy of equations (2-17)
in the 1imit £ — O . We have noted that the Landau solu-
tion, 7; (/It)]lg (1)t=0) » has a part which, for an
unstable plasma, grows exponentially and, after a time,
dominates the remaining parts (which are either exponentially
damped or oscillate as C?gﬁi&f ). If ¥ represents an
average growth rate of the disturbance then one can charac-

terize by VX the time at which Zj_(_\u) e’o’?r becomes
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a good approximation to the Landau solution. Thus, we need
only require that f J>7ér for the asymptotic form of each
term in the solution for ;?(/lt) to be a good approximation
to the exact téem.

‘ However, in order for the asymptotic solution to be a
useful approximation, the adjustment through wave-wave inter-
actions of the plasma to the presence of the disturbance
must not begin on any significant scale until some time after
e ~§5- . In other words, the terms of (7.2-23) which repre-
sent corrections to the Landau solution must be sufficiently
small that they can be neglected for times f"i'é7 . If
such 18 not the case then part of the reaction of the plasma
through wave-wave coupling takes place during the short
times f’<:2%- . The form of the solution cannot be greatly
simplified for these times as the mode-coupling mechanism
does not dominate over the initial transients in the plasma.

The complete hierarchy of equations (2-17) eontains, in

N, U+l
) which

the limit £ > O , a term of the form Jp”(f
we have discarded in writing the hierarchy (5.3-4). We have
anticipated in Chapter 5 that the contribution of this term
to the solution would, for a certain class of problems, be
small for some times of interest. To confirm this view, we
solve the complete hierarchy (2-17) in the limit £ - O and
use order of magnitude arguments to show that the terms which
appear in addition to those shown in (7.2-23) are small for

some "intermediate" interval of time.
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7.4.1 Diffusion Terms

We consider the integral of 702 (71t) over the velocity

—

2JS , a quantity related to the electric field é}lt). The

/

first term of the solution (7.2-23) becomes

J o : Dz go) 2 670;32" -5 e,o,gz"
Z g

7 70/?”',4(-/7_‘; (7-4.1-1)
andecan be characterized by the order of magnitude
= Rl Xt
fze" ~oce (7.4.1-2)

The parameter (O comes from the initial value function
7/‘; (/)t=o) present in 7?; . In order to characterize the
order of magnitude of the second term of the solution

(T.-4.1-2) we use the relation (7.3-7) to write

- v Dz 1) A}

5 o Rr Jpptadzikit (7-4.1-3)
52(42170,?,«9?{2-,)@0) W € (pp )

If Z{«\,—z is small we may replace

£ +2%,,+iKA by £ +i R
(7.4.1-4)

E(pp +2%) by Wy 2&

(4
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and write the first terms of the solution for £ 2 (¢) as

-+

é‘; )= 2/(3”(/07? Cﬁ? { f wan aD,?wCz'm( e;xfg } (7.4.1-5)
G

The second term within the brackets is simplified by substi-

tuting (7.2-11) for C;, (/) and using the Plemelj formula

(4.3-15) to evaluate the integral over /?/ in the limit 2]2\,—?0 .

Taking note that, aside from the factor (fg&ii’ﬂ?)ﬁ , the

integrand of (7.4.1-5) is an even function of /—(.’ we find

-]
t|-bom A&/(/Itfo)
t_ 3. (s, QTR fo)e / %+ '70/?'*1’/?’/2} 9
SdKC»,()e &vj("”(‘g’( 5 -p) fgf"”‘ 3¢ ,Q k>
{ =120 a Sy :—» 7. s
RO S (7.4.1-6)

The velocity dependence of (7.4.1-6) 1s dominated (in

the 1limit of large times) by the exponential factor e:?b;?;t .
We have assumed that the unstable modes are confined to a
small region AE of wave number space. The initial growth
rate )(7}) (considered now to be a function of velocity)
is a positive function of /1'17- only in the velocity range

Av which corresponds to the velocities of the unstable
modes in the wave number range AX . Thus, the exponential

eQX(n'Z) ¢ and therefore the quantity within the brackets
of (7.4.1-6) becomes a peaked function of velocity with a

width AV and a maximum pear the initially most unstable
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mode. The amplitude of (7.4.1-6) outside A is very
small (of O (c¥)).

The order of magnitude of (7.4.1-6) inside AV 1is
characterized by ( v 1s in AV )

(50//?’('4,()6 ) O‘QE’QWHLQU(V) (7.4.1-7)

Thus, the second term of (7.4.1-5) may be written

2t Nt
a7, ?D‘{I)C =(1) e 2 2 .
Jd’(d 70#11(,; (.731,)2 gs ~¢ € CP(V) (7.4.1-8)

where X is some average growth rate. The growth rate
(for small b,/? ) 18 found from the Landau solution to be<’
(see also (3.2-25))

o¢
. = it ok

= 7-4.1-9
@ IE/3R ( )
O/ZL 2% - “J’(/}( ’

If we assume that o(gv) ~ (°Y,), ., and that

0 F 4.1-10
Sor }"(K)i) > it (7.4.1-10)

+i /(sz)
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(see the discussion following (8-1T7)) then the ratio

YiK) CP(Vy Q%PE‘ has the same order of magnitude
as the growth rate ) , and the magnitude of (7.4.1-5) may
be written (for 7 > < )

7

“3%) .o } (7.4.1-11)

£ @) »o*eﬁ{] HS e

All additlonal terms of the solution for E(t) can be
characterized by an order of magnitude which is some power
of the quantity ( %‘7 et 1y,
We have argued that the asymptotic form of each term is
a good approximation for times ¢ > 3’,— . We see from (T7.4.1-11)
that 1f (O°/y) 1s a small quantity then the terms of
@(g—_g/g G'nlt) (which we henceforth refer to as the

"diffusion" terms because, as we show in Chapter 8, they lead

to a diffusion of the distribution function ][’ (/]t) in
(<]

velocity space) do not contribute significantly to the solu-

tion for £ (¢) until some time Z")j,— . However, 1if

(%) 1s not small then the diffusion terms begin to con-
tribute significantly to the solution before they can be
approximated by their asymptotic form (i.e., O—;}ié’wf ~ 1
for T < 5’7 ). In the latter case, part, if not all, of the
readjustment of the plasma through wave-wave interactions
takes place during the initial stages of development of the
disturbance. In order to determine the nature of the solu-

tion for short times (¢ < 5/7 ) it is necessary to include

the contributions from the poles of ,5}(/,2'/70) in the
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evaluation of the convolution integral (7.2-14). Further,
the free-streaming © A% and additional collective modes
must be included in the time dependence of B(/It) 7/[2:(/,'1%0)
(see the discussion of (7.2-1)). The short-time behavior of
the solution becomes very complicated and the complete
readjustment of the plasma to the disturbance due to wave- J
wave coupling can not be followed. We assume henceforwafd
that the initial amplitude (G of the initial perturbation
is sufficiently small that Oy <<1 .

The wave-coupling terms in (7.4.1-5) begin to exert a
significant effect upon the solution at a time 7 which may

be characterized by

2
47
S e ~1 (7-4.1-12)
. Yy
However, we note from (7.4.1-1_2) that at time 7 , O"G’b/ ~Y 2 R
and the electric field has an order of magnitude (see (7.4.1-11))

Eq) ~¥" (7.4.1-13)

in agreement with the conclusions of PFrieman, Bodner and
Rutherford’>, and Aamodt and Drummond.3% The initial growth
rate characterizes the amplitude of the electric field at the
time the wave-wave interaction terms begin to control the
development of the disturbance. When (7.4.1-13) i3 combined
with the condition that O ;’/X <«<1 we fina
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&
£ "’(r)

<< { (7.4.1-14)

We conclude from (7.4.1-14) that the initial amplitude of
the disturbance must be small compared with that at the
time 7 1n order for the asymptotic form of the solution to
describe the initial stages of the adjustment of the plasma

to‘the presence of a disturbance.

T.4.2 Redistribution Terms

There are many wave-coupling terms which have not been
included in the asymptotic solution (7.2-23) for é;(/]t) .
In order to estimate the contribution of these terms we

N,/
consider the complete equation (2-10) for /0 (/|t) ana
take a Fourler transform in the spatial variable 3€ to

obtain

{N-1}

( o))f(/m -—-Z‘M(ﬂf (glt)f-ZZLg)f f/,/lz“) (7.4.2-1)

Equation (7.4.2-1) may be solved in terms of the propagators

7 vlt) .

N/
(1nt) = @(/lz‘) r=o) de@(//t—f),vf Ml c,/)}C ( Jlr)
(7.4.2-2)

jd‘fﬁ(/ Z"'f)/v ZZL(G/)]C_,_(/QIT)

i</ K K; J
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If we substitute in the second term on the right-hand side
of (7.4.2-2) the solution of the equation for 7[‘_‘ (4/I7)
we find
t
(o Piizr)+ Tmmf Wi
b X ’/(/(
(7.4.2-3)

t 2 N2
=£df Ruir-nz A qu% (Y17 g 417-0) * -

which becomes after an integration over the velocities

/Ui /U‘
g(d/U') dep("t‘T)NZM({/)f (Jlf)..

_ (1b2-d)
=j'oo/r7§(/ Z'“T)delf M(J)P (O/If)}E‘(J t

The operator jd”jM(’j) , when followed by a function ]Q AU
i

1

of the velocities _07;“ and /Z/;‘ and the wave numbers X and

——

/3- becomes, from (5.3-1)

o p ,
Xd’f/”M{.’/’ég.‘y) @'ﬂ")sjd/( (R-R)VUR-R) J/Z“?j(

where an integration by parts has been used to write (7.4.2-5).
The asymptotic behavior of the term shown on the right-
hand side of (7.4.2-4) is determined by the factor
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@:% (j IT)}/é:';Q(g'IZ‘=O) . The methods of Section 7.2 are used
to evaluate the convolution integral in the limit of large
times. We can continue to sulstitute for terms on the right:
hand side of (7.4.2-2) and obtain a complete ‘solution (in
the 1limit £ — O ) for the single-particle.function. The

leading terms are

-—
t>e0"%

. . ~ - # t
Lm L (¢) = iﬁ%ﬂ@ﬁ {_7 +jd/( %(Ail&fgé,)&(i)%,(l)ew ) +eo o }

0”‘02-6)
7 . ~ (Per et (7
o B Olpee Pl Ty B O .

The solution (7.4.2-6) contains all wave-wave interactions,
including those which lead to a spreading of energy through-
out the wave spectrum.

We observe that the coupling between waves may be
divided into two categories. Interactions between the waves
X' ana -%' , represented by the operator / (jj) , are
found to lead to a diffusion of the distribution funection

}{: (11¢) in velocity space; interactions between the
waves A-¥' and X' , represented by the operator M(y‘) ,
are found to lead to a redistribution of the wave energy.

We therefore refer to L(t/j) as the "diffusion" operator and
M({j) as the "redistribution” operator. Every termé6fithe
solution for é (/]¢) but the first contains some combination
of these operators.
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The order of magnitudes of the first terms of (T7.4.2- 6)

have been discussed. The product '7? (/)7?4 in the
third term is proportional to the square of the amplitude §
of the initial perturbation. We once again approximate

E (Pt @ar
& (R o) ~ O 70

and

(p/("'* )T Q Qt
2 o Mz () ~ dwv)e
Sdl(d &72/*79?/*2/(/}/’ 5(7%2/*70‘/) P P O( a/ 37; )
(7.4.2-7)
~O(2e™)

to write the order of magnitude of the terms on the right-
hand side of (7.4.2-6) as (see (7.4.1-11))

f"mw £ ~ G_EZ(z‘[j +(%=ea?/z‘)+,_,]

et (7.5.2-8)

We note from (7.4.2-8) that the relative importance of
the redistribution and diffusion terms is determined by the
growth rate Y . If X<  then the diffusion terms domi-
nate the redistribution terms, and 1f Y >/ the latter
terms dominate the former. We may interpret this result by
noting that the redistribution of wave energy through the
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Thus, the asymptotic solution (7.2-23) for Zg (/1t)
1s not valid for all times { >3 . It 1s valid only in an
"intermediate"” interval of time which we may characterize by

intermediate times: Lt<T (7.4.2-10)

_L
¥
The length of the intermediate interval is inversely propor-
tional to the growth rate. If )Y 1s very small then the
amplitude of the disturbance is limited to small values

( ©(¥"%) ) by the aiffusion of 75(/12‘) in velocity
space, and the redistribution of wave energy takes place so
slowly that its influence is not felt unttl well after
diffusion has been completed. However, with increasing
values of 5’ the energy redistribution becomes stronger
and may exert a significant effect upon the behavior of the
plasma while diffusion is still in progress.
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CHAPTER 8

SIMPLIFICATION OF THE SOLUTION IN THE LIMIT OF

SMALL INITIAL GROWTH RATES

The growth rate q% (normalized with respect to the
plasma frequency) determines the relative importance of the
diffusion and redistribution terms in the solution for

72‘ (/l¢) - If ¥< 1, the diffusion terms provide the
dominant correction to the Landau result for an intermediate
interval of time which has been discussed. We show in this
Chapter that 1if the growth rate is sufficlently small that
terms of O () mayhge neglected compared to terms of & (1)
then the solution, for these intermediate times, reduces to
a form which is in essential agreement with that obtained
from quasi-linear theory.

'~ We found 1in Chapter 7 that the solution (7.2-23)

(without the redistribution terms) for the single particle
distribution function satisfied the linearized Vliasov equa-
tion (7.3-11) and that the two-particle function, if it

could be factored initially, remained factored. The spatially-
homogeneous function ;{ (/]¢) and the disturbance 7%(/}2‘)
then obey, for intermediate times, the followihg get of
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coupled equations.

Bcf);zt(/lz‘) + i KA 7,?(/!2‘) ‘l'iV{K)'éf—/i_gt—)fdﬁ]g(/lt) -0
M Jo//u* L(g),t mz)f i) (&)
The relations (8-1) may be combined to write
s“m f"”‘ Ly ) I{:: (lt) D, fuie) =
=— JO/,?L(,) e’* t(fd”ff}(llt));‘z @"O’?t,{?’(,,t)) (8-2)
% o+ 1R

An order of magnitude analysis is used to show that the
term on the right-hand side of (8-2) 18 of O (¥ ) compared
to the terms on the left. If the solution (7.2-23) for

t;(?}t) is substituted into the right-hand side of (8-2)
we find

At
-fd/? Lyiy £ e (Jdn 7;:’?))155 L e L)

aX;z‘ ~

£ 1K

(8-3)

‘/t
= *Jd/([ (/) IJC//( @ P(I}ZOL’TQX_./)LDA?(I)(/LI )+

The right-hand side of (8-3), as a function of velocity, is
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very small (of (3 (s7)) outside of the velocity range centered
about the most unstable mode. The order of magnitude of (8-3)
inside AV can be characterized by

45t 4 2 a \
rhs (8-3) ~ ¥ . 5"3(—0:—- PQXt) (8-4)

3 Ve €

The correction term (8-4) increases exponentially with
time. At the time 7 when the diffusion terms first become
important (from (7.4-11), Qg—,j eab’f~ 1 ) the correction (8-4)
is of O b'a). Howeyer, at time 7 the second term on the
left-hand side of (8-2) can be characterized by the order of

magnitude (we use IE (1‘),;2“'5/ from (7.%4-12))

o Lz 0 Jd””,p”t‘ inwtan ~ oK) (8-5)

If b/ is sufficiently small then the term on the right-hand
side of (8-2) may be neglected compAréed with the terms on the
left, and we find

2
(/It) Ud/zf (/It)} ,
jd/([‘ (1) 2 Py s IDE(/)f(/It) (8-6)

As a matter of convenlence we have included in the denom-
inator of the integrand of (8-5) the initial values of the fre-
quency and growth rate prather than the time-dependent quanti-
ties assoclated with the quasi-linear solution (see equation
(3.5) of fef. 23). The difference between (- z(_.)—»+2ﬂ\+2/<-/17? )'1
and ( -/ (t) +3;2,(t-) ~ IR ) "1 in the integral over X 1s

v Iz
M N
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of O (b/ ) and s0 is a correction which is of the same order
of magnitude as the term discarded from the right-hand side
of (8-2) (see also the discussion following (8-11)).

Equation (8-6) describes the diffusion of the spatially-
hemogeheous part of the distribution function in velocity
space, (there is a velocity derivative in the operator L—s(/))
The diffusion coefficient depends upon Ud,yf (/[t)l which
we may calculate from the solution (7.2-23) for 7[' (/]¢) - An
equation for fd/«f;p (/It)} is found by integrating (7.2-23)
over the velocity i} , multiplying the result by [oF 73 It)
and differentiating with respect to time to obtain (multiply
by K '}"R(/() to obtain the square of the electric field)

S

S50 = 28 |l

(8-7)
~ 2 gt %t
K 7/(/0173*’ e " \dR'e (7" (/l,qr.?lfn))lg(:)fp(ﬂ,o;g*.?% zD,é(/))Ck.,(/)i“
The second term on the right-hand side of (8-7) contains the
operator '/;T;?.( / ] 70’? +QX,3/)Z'.D,Z‘(I) which we may expand about

the point 7012- in powers of the small quantity Qb:zn .

T y - ——l_ ‘ = . -
BUlgerag)iyn =50 T 7 ) (8-8)
We have defined the new operators
2Dz ()
W oy ,—‘
T o j ' PR, (8-9)
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'72':/(/) = -é—_j; ) (8-10)

(4

To obtain the expansion (8-8) it has been necessary to

write

AR ST (R S (8-11)
;0A¢+.7a;?,+z'/?m, /O,?f-z‘/{y?, K (70;*?'/?‘/%‘)2
The relation (8-11) dees not converge for values of
velocity for which |K.J; -wg| < |Q¥»| . However, the series
(8-11) always appears with some function: of velocity
Dy () F () in an integral over the velocity A} ,
(for instance, 72?(/170/?*'?&?’) ! Dg (1) FUA) ). 1If each
term, but the first, is integrated by parts (the function
F () vanishes as i -0 ) the nth term of the series
becomes the n'h term in a Taylor expansion of JQD;O)T(/'U?)
in powers of ( XK/;‘){) . This expansion will converge for
functions  F () which are analytic in the neighborhood
of the real /_));’ axis. We require the growth rate to be
sufficiently small that we need keep only the first term in
the expansion.
We may use (8-8) to approximate the second term of (8-7)

as

o) ox-.t Y /‘ZI
Rl (R + % (/))Jo//( 5)’;2—, & tC,?, (1) (8-12)
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Similar approximations may be used to evaluate the remain-

ing terms of (8-7) with the following result

a—‘\’lr/é.(t)}a —-(;225?, +HZoy + L) fun - qﬂm))/ﬁ’; (r)}a (8-13)

The first correction term to (8-13) is

(o7, u) af “2|E, <t)) (8-14)
which 13 of O(¥) compared to the terms on the right-hand
side of (8-13)(from (8-5) and (8-6) "(éf;,c/at)ﬁ;v ~ ).

In order to simplify the relation (8-13) we note from
(8-6) that the most significant change in /; (/]t) with time
takes place in the small region Av centered about the
wave velocity of the most unstable mode (see also the dis-
cussion following (7.4-6)). The quantity (£(/It)- cﬂll)) is
small outside of Av « We use the Plemelj formula to write,
in the 1limit of small ¥

Sd”f,o,;fﬁ(f,), huln) - 90(”) =§’o"‘ﬁ;£\’;’/‘,‘/’ (£ u1t) - gw)

(8-15)

+217 V) L%I (/:-;(/IZ') - d_J—(I))]

W=k
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where (see also (3.2-25))

kL (]r) =er/17; /f(u”,-,,;m (8-16)

We note that the denominator of the principa2 value integral
in (8-15) 1s an odd function of the velocity A inside AV
whereas the numezator is an even function. We therefore
expect the principad value integral to be small, certainly
no larger than the second term of (8-15).

The Plemelj formula may also be used to evaluate 3EVQF? .
The ratio of the real and imaginary parts is

3
Re (S%) I (gu;))“"% (8-17)
9 (55) 4%/ oot

If the first and second derivatives of the distribution

function @({): at the velocity Y, =“)K/K are considered

to be of the same order of magnitude then the ratio (8-7) is,

from (7.4.1-9), propdrtional to the growth rate Y . L

infer from the condition that ) be small that the real

part of 3E/a1q? 1s small compared with the imaginary part.
The operator 'ZE (/) appears in summation with its

complex conjugate in equation (8-%4#). We require, then, only

the real part of the operator 75 (1) .« To approximate the

real part we use the imaginary part of the numerator and the
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imaginary part of the denominator of (8-9) to write (the
error is of O()) )

TflKl [au (B - §m):’
45c/ E)@hVQM

(8-18)

The result (8-18) is substituted into (8-15) and the defini-
tion (7.4.1-9) of the Landau growth rate q% used to

obtain
- Q -
ﬁ—lf;(t)l = 2,0 E, @) (8-19)
where
:
o L Glt)]
Y = T L“g)/ Ja“"% (8-20)
D9y
go M-

The relations (8-6) and (8-19) describe the self-limit-
ing of the instability at some maximum amplitude. If the
plasma is strictly one-dimensional (the infinite magnetic
field problem of Aamodt and Drummond39) thén, according to
the equations (8-6) and (8-19), the instability grows until
a gpectrum of waves is established, and the disturbance

remains at equilibrium thereafter. However, if the plasma
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can support a three-dimensional disturbance then the dis-
turbance, after reaching its maximum amplitude, gradually
begins to decay, as discussed by Bernstein and Engelmann.2l
The approximate results (8-6) and (8-19) have been
obtained from the exact solution (7.2-23) of the linearized
Vliasov equation (7.3-11l) by an expansion in powers of X .
The growth rate is assumed to be sufficiently small that terms
of O(Y¥) may be neglected compared with terms of O(1) .
This assumption is less restrictive than that made in
Chapter 7 where the redistribution terms were discarded on
the basis that they were an order 5’Vl smaller than the
magnitude of Z:?(t) « The redistribution terms represent

the dominant correction to the results of this Chapter.
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CHAPTER 9

APPROXTIMATE CALCULATION

An approximate calculation is made to determine the
variation of the electric field energy with time. The
advantage that the approximate method enjoys over the
numerical calculations used until now is that the basic
parameters of the system can be varied and the correspon-
ding growth and self-limiting of the disturbance easily
determined. The approximate calculation is limited to
the energy in the most unstable mode. However, the results
are shown to have a more general application.

The discussion 1s limited to the case of a one-dimen-
sicnal plasma (the infinite magnetic field problem of ref.
39). An approximate solution for the electric field
during an intermediate interval of time has been obtained
in Chapters 7 and 8. The relations required for the
present discussion are obtained from Chapter 8 by integra-
ting equations (8-6) and (8-19) for Z?(/rt) and Ekff}
with respect to time. If the solution for z§(dt) is
substituted into the definition (8-20) of XK (t) (the
Plemelj formula is used to integrate over K ) we find
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Q [~}
£, =|E) e (9-1)
(9-2)

| ,e'K(o)}Q 18 the initial value of /,’;",<(z‘))"'7 and
E(ult) = (EK (f))%)ggu . The two relations (9-1) and
(9-2) may now be combined to write ( Y(u|t) = (&((t))%,u )

= W
u=%

X =Y+ 4(&) Ewole’

We argue, as in Chapter 7 (see discussion following equ.
(7.4.1-6)) that the time-asymptotic behavior of the quantity
within the brackets of (9-3) is dominated by the exponential,
not by the initial value |£(x0)|" , and write

Y@ =Y + 3’—([(.'2 i m“'ﬂ)

dU
+,?fdf S Yty ’] |Etuo) e
JUR

The right-hand side of (9-4) may be simplified. The

(9-4)
a Q‘fdf b’(u}f ))

Wy

growth rate b/ (u]t) , considered as a function of velo-
city, 1s initially distributed in a way similar to that

shown in the sketch below (we show only the unstable modes).
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)

v
~

—— — — - -

P

v
=

Ve designate by 1/, the velocity at which Yy (and
therefore the slope 99/}, ) has a maximum positive value.
The curvature O%, / gujl is negative. We note from the
Drummond and Pines calculation (Fig. 4 of ref. 23) that the
maximum positive slope within the bump of the distribution
function f (/1) remains, as a function of time, near
the same veloeity ( U, ™~ 4.7 for ref. 23). The wave mode
which initially has the maximum growth rate continues to
have the maximum growth rate for all times (see also Fig. 5
of ref. 23 where the maximm in the curve 6;’7-~I£’(Lt)t)l&Z

is shown to remain at approximately the same velocity for

all times). Thus, we may rewrite (9-4) ( ab//(;um = 0)
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2;@)?— A +(So é mm),b’ (t)l (9-5)

where b:n (%) ) and L:n (t) , are the growth rate and electric
field of the most unstable mode.

The integral of (9-5) over time 1s evaluated by expan-
ding the growth rate about its initial value.

S:;/f Y=y L (dflé a’(u;o)),t_ e AT
33

X (9-6)
Yt + g";%""‘ tHE@

R

The result (9-6) s substituted back into equation (9-2) for
2
,EK (t), to obtain

a a ¥t
|E, )] =|E ] €

e"f’( : 2

For convenience, the function 7/ (#) of time is defined as

| AQX(ulo)/aua
F(t) = exp sznz‘{.f * TR

IE, (o)IQF(z“)} (9-8)
Then

£ @l =IE ol Fie) (9-9)
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F(t) depends upon the initial conditions on the problem.
. The asymptotic value of 7 ({) 1s found by taking the
log of both sides of (9-8) to write

_ 2n F (1)
sznf —_Z ) QQX(qu)/au_z‘
2x,)?

(9-10)

Em(o)};z F(t)

In the 1limit of large times the denominator of (9-10) must go
to zero (if F({) 1s to remain finite).

<
: Lim F(1) ~ - ;zx((‘jm (9-11)
T e a“a" IE.

The asymptotic value of 7 ({) is positive by the condition
2

that OV (ulo)/ auj‘l is negative. The asymptotic value

of the electric field, which becomes

. 2 (‘;za’,,,l)a
2o e~ = Sfudys (5-12)

is independent of the initial perturbation and varies with
the characteristics of the initial bump on the distribution
function. The larger the value of Xm the higher the bump,
and the smaller the curvature o Y(uo)/ aui the wider
the bump. The result (9-12) indicates that in general the
larger the area underneath the bump the larger will be the
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equllibrium energy of the initially most unstable mode.

Q
Note, further, that if we consider (J(° bl/au:l )""O(Z{m) then
from (9-12)

Lom |E o) ~ ¥ (9-13)
oo | “m Ym
in agreement with the results of Section T.4.2.

The relation (9-7) has been used to plot in Fig. 1 the
energy in the most unstable mode as a function of time.
Included also are the results of a numerical calculation by
Drummond and Pines.”3 The initial amplitude £ (o) and
the initial growth rate Y  for the approximate calcula-
tion have been matched with the corresponding values of
ref. 23. The maximum amplitude has been normalized to unity.
Although the approximate calculation takes a longer time to
reach the final equilibrium state than does the numerical
calculation (see Fig. 1), the similarity of the two curves

for times 2? less than 10“

plasma periods should be;.noted.
The approximate method appears to predict correctly the time
interval in which the most rapid readjustment of the growth
rate of the most unstable mode takes place.

The results of Fig. 1 have a wider application. The
stabilization time of the most unstable mode is a character-
istic time for all the modes in the plasma. Drummond and
Pines have shown that even a mode which is initially stable

and becomes unstable during the development of the distur-
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ELECTRIC FIELD ENERGY &g, (1) IN MOST UNSTABLE MODE
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bance finally levels off at an equilibrium amplitude in
approximately the same time that it takes the most unstable
mode to attain equilibrium. Thus, (for the case shown in
Pig. 1) the time { ~ 10 plasma periods is characteristic
of the time in which all the unstable modes have undergone
nost readjustment of their growth rates.

Thé advantage the approximate method enjoys over the
numefical calculation 1s that the parameters of the system
can be varied and the resulting behavior easily determined.
As an example, we note from the discussion in Chapter 7 that
the smaller the initial growth rate the later in the devel-
opment of the disturbanee does the redistribution of energy
in the wave spectrum become important. The approximate
calculation can be used to estimate the magnitude of 5’ for
which the redistribution terms begin to significantly alter
the solution Jjust as the diffusion of ZS(/It) in velocity
space nears completion.

S¥ulo)/y 2 2

If the ratio ( (93;75 IE;(oﬂ ) of the

initial to the final values of the energy is considered a

constant (0.08 in Fig. 1) then 7 (¢) is a function only of

the quantity 3; t . The period Al of greatestpeadjust-

ment of the plasma to the disturbance ( AT ~ 104 in Fig. 1)

then scales directly with 5; « The initial growth rate

is approximately 4; =~ 3.3 x 10'&, and

B,/nAZ' ~~constant ~ 3.3 (9-14)
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We have denoted by 7 the time at which the diffusion terms
first become important (from (7.4.1-12), 9—{; GQZ‘”"A ~1)
and by 77 the time at which the redistribution terms first
become significant (from (7.4.2-9), 7'~ 3% tn (i.‘:’;_“"’) ).
The initial amplitude &  may be eliminated from the

relations for -~ and 7 to obtain

24, (7-7) ",Zn(i"_"_”“_") (9-15)

6—2

If the coupling between different wave modes 18 to become
important just as the velocity diffusion nears completion
then we require that 7 -7 ~A? , and from (9-14)

m(-ﬁlﬂé_%‘ﬂ‘l) ~ 6.6 (9-16)
To eliminate [ (moax) from (9-16) we note from Chapter 7

< )
that ¥ ~ £(r) . The resuit Lm(max)jr .~ 1p
is then used from Fig. 1 to rewrite (9-16)

/0 _
n ( —_1) ~ 6.6 (9-17)
which weymay. solve for b/

Y ~ 107 (9-18)
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If the growth rate (normalized with respect to the plasma

frequency) is smaller thah 10"4

then the diffusion can be
expected to be nearly completed before redistribution of
the wave energy begins to take place. However, if &; is
greater than 10—4 then significant spreading of the wave

energy begins while diffusion is still in progress;
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CHAPTER 10

CONCLUDING REMARKS

The approach to the kinetic theory of plasmas which
has been presented lies between the approaches which employ
dlagram methods and the approaches based upon the EBGKY
hierarchy. The former start from a direct solution of the
Liouville equation and eliminate excess information after
the solutlion has been obtained. The number of different
coordinates is enormous and diagrammatic methods are
reqqired to simplify the terms. On the other hand, the
BBGKY approach, which disregards excess information from
the start, leads, in the collisionleas l1limit, to a non-
linear equation which has defied nearly all attempts at an
exact solution. The method discussed here eliminates only
part of the excess information at the start; all N velocity
coordinates are retained in the formulatipn. As a conse-
quence, the equations of the theory are linear and the
differential and integral operators are independent of time.
However, the number of independent coordinates is not so
large as to require the use of any diagrammatic techniques.

The present method appears to be particularly useful
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for studying plasma in the "collisionless" regime. In the
limit £ - O , the hierarchy of linear eguations reduces
to a form which can be solved in detail. The solution for
any distribution function, which can be written entirely in
terms of the initial conditions on the problem, includes all
wave-wave interactions. The form of the solution can be
simplified by assuming that initially the distribution func-
tion may be factored into a product of single-particle func-
tions. It follows directly from the solution that the
distribution functions then remain factored at later times.

We have considered in detail the problem of an
(initially) small amplitude disturbance in a weakly-unstable
plasma. In the limit of small growth rates an expansion in
powers of 5/ can be used to evaluate the fundamental ele-
ments of the solution, i.e. the singular velocity integrals.
If only the first term in the expansion is retained the
resulting approximate solution for the single-particle dis-
tribution function is found to be in essential agreement,
for an "intermediate" interval of time, with the results of
quasi-linear theory.

However, there are many problems of practical interest
where Y 1is not small, and the approximations of Chapters
7 and 8 are no longer valid. In particular, problems with

5’ ~ 1 havehavé been discussed in connection with shock

46

waves in plasma guns. The general solution for the single-

particle distribution function, obtained by the methods of
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Chapters 5-7, is still valid for these values bf the
growth rate as it includes all wave-coupling effects and
has been obtained without the use of any perturbation
methods.

However, the solution in its general form is very com-
plex, and some simplifications must be made. For a strongly-
unstable plasma, the solution could be simplified by consid-
ering the problem of two interpenetrating streams of cold
gas. This modkd has been dlscussed by Parkerh7 in connection
with shock fronts in astrophysical problems. The distribution
function for each stream becomes, in the limit that the temp-
erature approaches zero, a delta function centered at the
veloclty of the stream. In this limit, the fundamental units
of the solution,the singular velocity integrals, could be
evaluated and a simplified form of each term thus obtained.
However, the solution would still involve an infinite number
of terms, and these would have-to be rewritten in closed |
form before a complete understanding of the solution could
be obtained. The solution ®would be compared directly with
the results obtained from the computer experiments of

48,49

Buneman and Dawson.so It is planned to investigate

this possibllity as an extension of the present work.



- 161 -

The sé:f-adjoint nature of the operator matrix Y in
the equation for the vector f (t) has been discussed in
Chapter 3. In this Appendixﬁ: we study in detall the spectal
case N = 2 and obtain explicit solutions for the eigen-
vectors. The eigenvalues are degenerate in that two eigen-
vectors are found to correspond to each eigenvalue. Since
the eigenvectors are orthogonal and form a complete set,
the solution for é(\t),‘ may be expressed as a sum of these
eigenvectors with appropriate coefficients. The coeffici-
ents which at time t are related in a simple way to the
coefficlents,at t = O, are shown to oscillate harmonically
in time at their characteristic frequency. It should be
stressed that this problem has no real physical significance
since the equation for 70 M/(/ |?) was derived on the
basis that terms of O (‘ﬁ;') could be neglected. The dis-
cussion below 1s meant simply to illustrate some of the
mathematical remarks made in Chapter 3 about the properties

of the self-adjoint operator. V .
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The operator V for the special case N = 2 is reproduced

below.

2 = Sun S _ O
KA ~-L (S - &
1 ) (&q{ ané)
V = R (A-1)
\ ‘5’;'?"7!(4{) (5’:&- _Q___) K4 /
The only component of velocity which appears in this operator

—

is the component parallel to X . If we denote by u, and U,
the components of /"72 and /’—}; parallel to the direction X

and assume that the intermolecular potential 1s the Coulomb

potential ( W) = Q ) the operator V  becomes

d
Ky, g (3 - )
) OUy _
L (o _9
"3 (54 au,) Ky

The eigenvalue problem we wish to study 1s formulated as

V4, <A, -2)

PN

where A 1is the eigenvalue and /! i1s the corresponding (two-

dimensional) eigenvector

J (/zm) (A-4)

A Q)

If we introduce the new independent variables f and %
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§ = K(u-u)
(A-5)
n = Ky +y)
the equations (A-3) become the fdllowing
/ 3
(2§ +4-Nha IF/”Q) =0
(A-6)

a%/"” #(h-FF-Xh@) =0

Note that these equations do not contain derivatives with
respect to 7( « Since 72 is prOporticnal' to the total momen-
tum of the (two-partitle) system, and is therefore a constant
of the motion, we expect 1t to enter our solution only as a
parameter.

The equations (A-6) are to be solved simultaneously for
the functions A(])_ and A(Q) . It is convenient to introduce

the new dependent variables

H =hw +A@

) (A-7)
H =ho) -h@)
and rewrite the equations (A-6) as
7 / o - -
(n-XH" +(zf "‘55")/‘7’ =0
(A-8)

(F5-5¢)H +(-A)H = 0
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We eliminate the quantity /L/ "~ from these equations by multi-
plying the first by ( 72- A ), operating on the second by
(;’fg‘ + 6:% ) and subtracting.

+

> st 2 _ A
[ - £ (aaf-]w o ws

The solution to equation (A-9) (for /m} real) is

H = Dy, (£) (A-10)

where _'D(f) is the Weber function (see Morse and Feshbachol)

and
m =(7;-A)a-1 (A-11)

Although the function 1;.( £) 1s defined for all real
values of /] , the condition that the eigenfunctions be normal-
izable restricts us to values of /1 which are zero or an
integer. If m is not zero or an integer the asymptotic
behavior of the function D) (f) as f-I 5o 1s

fmf'f}‘/ 88 £ - 400
D (5) >

W (A-12)
¥ € 5o
Fim CF )mu as f —> - 00

These choices for /M must be rejected because of the singu-
larity in the Weber functions as _§' —»-c0, However, ifm 1s
zero or a positive integer, the Weber functions are simply
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related to the Hermite polynomials

-5
D, (¢) =E—‘,’_‘ e /"’/Z/n(%) (a-13)

-5
where the exponential @ 4 assures proper behavior at the
limits _{' —Zco ., The Weber functions are orthogonal. We have

(o/f D)D) =VaT m!§ (A-14)

where Smm/ 1s the Kronecker delta. Furthermore, the Hermite
polynomials /-/n (ér) form a complete set. Thus, it is possible
to represent an arbitrary function as a sum of the quantities
:Dm(f) with appropriate coefficients.

If the solution (A-10) for A/~ 1s substituted into the
second of the equations (A-8) then

H =%-_—§-(§’-§ -;‘}-)Dn(f) (A-15)

The following relation for the Weber functions

(€) (A-16)

me+/

452, 5D, =D)
may be used to write

7

#=  er1 Do

(£) (A-17)
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Ther + in (A-1T7) foldows from the fact that the square root
of a quantity ((m + 1) in this case) may be positive or nega-
tive. The result that two solutions // exist for each value
of m leads to a degeneracy of the elgenvalues; two eigen-
vectors are obtained for each eigenvalue.

The same symmetry must exist between the elements of the
eigenvector j_z as between the elements of the vector f (t) .
The second element of iz i1s therefore related to the first by
an interchange of the velocities %, and U, . We introduce
the variables U+ty, and U -U, and rewrite the function

A () as the sum of a term which 1s even in U-U, anda
term which is odd in Zl, 'ua .

A(/) = Ae (U,“ug) +A°(u,’ug)

(A-18)
h(Q) =he (u-1)) = A (u-u,)

The subscripts e and o denote, respectlively, functions which
are even and odd in the velocity difference U-uU , Ve
conelude from (A-18) that the function // . is even and the
function 4 1s odd in the variable § . The Weber functions
have the property that :Z’)n (f) is an even funection of § it m
is zero or an even positive integer and an odd function of §'
Af M 1s an odd integer. The condition that /’ be an even
function of { then restricts m to values which are zero
or even positive integers (see (A-10) and (A-17)).

The eigenvectors f_l m become (for m even)
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D .(§) i 7 0., §)
b = A
) D,6) - = Do )
D (f .. (f) (A’lg)

Py 2
1"

A
~m ’ L 1
2.6) * = 1), (5)

S

where the superscript + or - follows from the sign in the

first element of the vector ﬁ . The constant A is to be

~m

chosen from the normalization of the eigenvectors. Since
:@;M(f) is always an odd function of the velocity difference

24-241 » the eigenvector Zz; is related to the eigen-
vector Aé; by an interchange of the velocities Zﬁ and Lg .

The orthogonality of two eigenvectors /%7 and ﬁm;

follows from the orthogonality of the Heﬁer functions. (see
fA-14)). If we consider the vector inner product of two

"plus" eigenvectors, then

jdf{ )...m'}

2A fdf(le)D (j)+N__I{ 12,0, (f))

" (A-20)

= YA T m! &,
The identical result is obtained from the vector inner product
of two "minus" eigenvectors. There remains the case of the

product of a "plus" and a "minus" eigenvector.

S I { hps i} Q'Qf Af (DD, 6)- ,},_,,,,——,1;,,,,(5)1;,,,,(;))
=0

A-21)
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where we have once again used the orthogonality relations
(A-14). 1If the eigenvectors are to be normalized to unity
we find from (A-20)

A=—d
“pNRT m!

(A-22)

An arbitrary vector f?f) may be written in terms of
these elgenvectors in the following way

f(Z) - Zﬁ:%f)é,:(f) *ZE;@:Q@,;Q‘) (A-23)

m even meven

where we have noted explicitly that the coefficients .ISn are
functions of ) and ! . The coefficients are found by
taking the vector inner product of (A-23) with an eigenvector,
integrating over the variable _f and using the orthogonality
relations (A-20) and (A-21)

B (1) :fdf{f(t),é;/p} ) 19;9,1*){45{{@:), /3;15)} (A-24)

where we have assumed that the eigenvectors have been normal-
ized to unity.

To determine the time dependence of the coefficients we
substitute the expression (A-23) into the differential
eugation for f (t)

< fw) +iV ) = o (a-25)
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The orthogonality of the eigenvectors and the relation (A-3)
t

o write
2B 0+ ABGY -0 (a-26)

The solution to (A-26) 1is

B ) =B ! (A-27)

where

*

A = ) 7lVmer | (A-28)

The oscillation frequencies of the normal modes are fourid to
vary with the total momentum (proportional to 7? ) of the two
particles. The coefficlents 3,:(}) and Bn—(?) may be found
from the initial value of the vector f by (A-23). The solu-
tion for all later times is then found by substituting (A-27)
into (A-23).

It 1s interesting to note that the independent variable _f
is the product of the wave number A and the velocity aif-
ference u,-u_l . If the elgenvectors are viewed as functions
of velocity then the "spread” of each eigenvectar in velocity
space will vary with the wave number X . In the short wave-
length ( A = = ) 1imit, the eigenvectors become concentrated
near the origin 2 - ¥, = 0 because of the factor. C"ga/‘/,. We

expect that as K > = more and more of these functions
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will be needed to represent some function with a finite
spread in the velocity variable Lg—zb_. Since each mode
oscillates at its own frequency, the larger the number of
modes, the larger the number of frequencies that are present
and the more quickly we can expect the coherence of the dis-

turbance to disappear by a phase mixing process.
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APPENDIX B

CORRECTIONS TO THE LANDAU SOLUTTON FOR 72 (/I¢)

N7

7

The solution of the homogeneous equation for é; (71t) s
when integrated over all velocities except,ﬁz » 1s found to
agree with the result obtained by Landau only after some
terms of C7(Z§) have been discarded. The solution as
written in equation (3.2-20) 1s a series in ascending powers
of the quantity [_ﬁafv.. The number of terms that must be
discarded increases as one goes to higher powers of’L{Zfﬁ.
Eventually, the number of "correction" terms becomes so
large that despite the fact that each is only of CjCéJ
their total contribution can be as great as that of the
terms retained. We take a term by term inverse Laplace
transform of the solution for ;,‘; (/]t) and estimate the
time t at which the 1) th term in the series becomes of O If
the ) th term 13 the one in which the correction terms have
the same contribution as those retained then t characterizes
the time at which the correction terms begin to exert a
significant influence upon the solution.

We consider the dominant contribution of these correc-

tion terms. The first element in the third term of the
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1
solution (3.2-15) for the vector 7[' 1(70) is

A

3 7 M
Y EZ 5 5D £inta _
Y, f»e‘ﬁ-ﬂ{ TR [OriR A

. . N . N/
- SEDety EDLUD fitiba) , HDEY) FDeu) 12 (i)
PR L PR SR JA PrHRA Otk or i R

(B-1)

where we have separated the correction terms from the "Landau"
part of the solution. The correction terms are distinguished
by the repetition of the index 1 in the operators @?/Q‘) .

There are (N-1) such terms, each of which is of O(3a). The
fourth term in the solution for M(I//f,) contains three differ-

- ent terms where there is a repeated index. These are

. . | »
Z‘ EDe ) ZDe 41 yEDews A (eit=0)
TPERE PRI iR 4R,

. . . o,
v e W v £DeG0 FDete) £z lt=o) (B-2)
T PRI, g PR ik, 7o+z‘/?—m;

, . . N/
Z 2Dp ) T ADR G0 4 Dettj) 12 It=o)
5 70+z1(w;1 704-2/(/1‘/; 70*:/(% 704-”(/5-’

There are six different types of times with one repeated

N/
index in the fifth term of é (//70) . In addition, there are
some terms with two repeated indices. Every time an index 1is
repeated the number of summations decreases by one. In the

Al 4 /
erm O N / ere are erms (o N ,
rifth term of /5 (lp) th N ¢ (of O(33)) with
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one repeated index while there are only N3 terms with two
repeated indices. The terms with one repeatéd index are
assumed to represent the dominant correction to the Landan
solution.

There are, in general, :1; (2-1)( z)-Q)/V’Q terms with one
repeated index in the 1) *P term of the solution for 7/{; Mfzbo) .
Since each term 1s of (O (7;;‘») the correction terms will have
a total contribution of O( 5;7(2)-1)(2)-.2)) compared with the
"Landau" terms which have a contribution of O(i) . These
two types of terms contribute equally to the solution when
V~YN .

In order to estimate the time at which the U P term
becomes of (©(7) we consider the solution for 7/42: (/lp) in the
form (3.2-20) and assume that the function P(77) may be
represented by a delta function in velocity space. The

quantity L(/Z7o) becomes

- 'a (1) 2
L(/‘?:p) =j7/(wﬂf) 3%: dif = - K Z/(K) (3_3)

PriRA ‘

If the intermolecular potential is assumed to be the Coulomb
potential ( W) =/—(1§ ) then the series in powers of L(/?,’]o)
(equation (3.2-20))becomes

.Z "'L(/_(-,}O) *LQ(/?;jo)*°" =7 -L » L ... (B-4)

If we take a term by term inverse Laplace transform (the

_ RUOSE (1 Aol
series ( B-4 ) 1s multiplied by the qmtity,oﬁ?é )3;7—% )
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%e obtain a series solution in which the U PP term contains
the factor Z"w-l/(gg-/)/ (the inverse Laplace transform of

Yo' 1s t"/(n-! ). This quantity which is small
initially will be of (9(7) when

£ -t (B-5)

If Stirling's approximation is used for the factorial we find
in the limit of large VU

QU-1) lntl ~ (Qu-1) £n (2V-1)

or
I ~av (B-6)

We have shown above that the correction terms will have the
same order of magnitude as those retained when U~VN'.
Comparing this result with (B-6) we see that the correction
terms can be expected to contribute significantly to the
solution for 75 (11t) when ¢t ~W . When we remember
that time has been normalized with respect to the plasma
frequency we see that the solution for 7/(.;.(/[1‘) =f(d/1'})'V 'ﬁ.M?/lf)
agrees with the Landau solution for times which are less
than -\/? plasma periods.
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APPERDIX C

MULTIPLE OPERATORS

C.1 Introduction

We have shown in Chapter 5 that the term @(,;79) 30
reduces, upon an integration over (N-1) velocities, to Aif-
ferent forms which depend upon the nature of the function

g W(I) . The reduced function S'l(l) =f(dn'} S X M/(/) is
required to be symmetric in the velocities in the set {S-I} .
However, this symmetry may be cobtained from a summation of

S-1 functions of the form /75'/(//1') or from a double
sum over ! and 4 1n the set {§-1} of the functions

Af'/(/);‘a/) , and 80 on. The function /) (/ a) is not,
in general, symmetric to an interchange of the index 2
with any other index in the set {S-/} , and /7?,(1154') is not
symmetric to interchange of ! and ;/ with any other index
in the set {S-1} . We can imagine a hierarchy of these
functions where the required symmetry of each number &;S'/(/)

is obtained from /) summations over the set {S-/} .

Y0 -ZZ Zb (g r) (¢-1-1)
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We consider only the lowest members of the hierarchy in
this Appendix. The extension of the results t¢ other
members may be accomplished entirely by the methods which
are presented.

We consider two problems. First, the hierarchy of
functions b,’; N'/(/) is generanzed in Section C.2 to
include functions of the form X (+2) and X M?/QB) which are
symmetric in _the indices 1,2 and the indices 1,2,3, respect-
ively. We consider the product of two J‘) (t) operators
with the function XN(/Q) and of three ﬁo (t) operators
with the function a,: (/233) . The forms to which these terms
reduce upon an integration over the extra velocities is
determined. The extension of these results to U f) (t)
operators and the runction b/ ({v}) 1s straightforward.

The functions X ({v}) are assumed in Section C.2 to possess
a given set of properties. The second problem is to show
that the functions a:;MU({D}) which arise in the solutions

f (1) and / 2'2(/.2) have these stated properties. This
is the business of Section C.3.

C.2 Reduction with Multiple Operators

The hierarchy of functions 5: Ml(/);’ . discussed in
Chapter 5 is generalized to include functions with more than
one spatial variable. The generalized functions XRN)U( {0}t)
are, in general, functions of time. The reduced f‘uncfions
nh'b; s'z)({v}l‘f) obtained from b,/l N’”({u}l t) by an integration
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over N-S5 velocities in the set {N-VU} have the following
properties. sV

a) The function bf "({v}|t) 1s symmetric in all -
velocities in the set {S-U} and may be written as a product
of the function /)oqv({b‘}{t) and S-V functions of
velocity Sp(n'}) .

, ) fs-9}
efs?{v}lt) =A°m?{z)}/t).ﬂ~909') (c.2-1)

The functions 90 { /) are mdependent of time.
b) The function ' ({ v}|t) may be written as the

sumof S-VU terms

{s-0}

X ({U}ft) Z/? ({v}lzlt) (c.2-2)

where Al’({v}lil‘t) 18 not symmetric to the interchange of !
with any other index in the set { S‘U_} . This funetion may

in general be factored in the following way

SV {s-v}
A (hile) < 4, awnmwﬂ'¢g) (¢.2-3)

U, ) .
The function /2, ({v}i|t) has the property that

U+, U
Jam At <o (c.2-4)
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v

c¢) The function 5/ { v}[t) may be written as a

double sym
sV {s-u} sV
¥, (hie) =) ) b (eohli iz (c.2-5)
i#4

where A ({z)} 2,0[1,‘) is not symmetric to the interchange of
the indices ! and -f s or to the interchange of either
of theae 1nd1ces with another index in the set {S D} The
function /7 {7)}] 2 4 ]‘t‘) may be factored as

Yr2) {s-v}

),
h, ({0}idlt) = h, «u.mmnf A) (c.2-6)

This function also has the property

7)4-22) UV
jdmﬁ ({D}lzllt) 'fd/u-k ({v}}z’,plt) =0 (¢.2-7)

XS
The extension of these results to other functions n ({ U.Ht)

of the hierarchy is straightforward.

C.2.1. The first example to be studied is

J@) Purn rart) ) (c-2.1-1)

N-2
The notation ( dwr ) denotes the element d/'u-; dn’;‘f/ coe o/,D-‘N
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in velocity space. The function JOA;EQ) is not in this case
a function of time. Since the @ (/1t) operator is known
explicitly only in terms of the Laplace transform variable
/9 » we take a Laplace transform of (C.2.1-1) and use the

-

convolution theorem to write

2(.
-0t /
fdf e’ ﬁow‘-) 49(/:7‘)49(& ) (f ROE
0 ’ ?

, N-2 N2 (C.2.1-2)
:O,M;l.['dpﬁdﬁ) @(/lﬁ)@alﬁﬁ)% (12)
The operator %D(ij-ﬁ) is, from (3.3-5)
- - j
@(‘?’pﬂ) 70-7011.2'/?2./7/'2’
Z DF(Q” @) (c.2.1-3)

*Z 2.7)2(23) AT (a<))
o e ool k)

The products of thesz two operators @ ( / 1701) and q_/?(;z)pﬁ)
/ 2

may be written as

yo(’lﬂ)ﬁo(mfﬁ) ZZ (C.2.1-4)
,B=0
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where
7 = Z 1
oo 7Ol'f2 N 70‘70,*2%/25
T - Z ¥ D)) (i) 1
0 ; 70/-/-;‘/;4,; ﬁr}A’,fU‘; 70 70,4-2}(2/)&
T = f___Z‘ ‘A%pz_{&i) (3<>7)
o~ PrIRA, b PRk oL R
" In general
Z,—V—Dx:lu) L gﬂﬂﬂmm (>m)
]{)+z4(//2/' f*z?% 7O,+z/'(’/v'
Y ‘)
o< summations
(c.2.1-5)

AT Ay A Dann) @)
/ PPk, L P Ry o~ P,
./

N

v
p summations

If the factored form (C.2-1) of the function X (1a) 18 used,

then
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flanf L, o =)

f(dn'})ﬂljo AQM?/.?) 2200810 [ l(ﬁwz 3 (;;a;q T
Jelo L, ) < 5 R e )
(@) Ly ¥ e 701;@.;;: e LIT P

- /7 12 a) Y (!
It 18 not difficult to show from these results that
2 _ 0 N2 2,2
- Y T A , L / _
where the Lapdaue operator 7,—37 ¢ I7O,) has been defined in

Chapter 3 (3.3-7). We take an inverse Laplace transform to
establish the final result

7o) M 24
5&7{”7) @(//t)@(“?’f)ff(/e?)=Z()(/IT)E(QIZ‘)/)O(/Q) (c.2.1-8)
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C.2.2. The next member of the hierarchy is X; (/Q)t) .
The product of two @(2"} operators and b’: N”(/alt) always
appears as a convolution integral of the following form.

N2
J(c/f‘g(lh‘-f) @mt*f}bﬂ"&f‘f) (c.2.2-1)
° H

A Laplace transform is taken and the convolution theorem

used to rewrite (C.2.2-1) as

o'szdﬂ p(/lﬁ)ﬂ_o(:)l;o—ﬁ) b,/'vﬁ;zlf)) (c.2.2-2)

If (C.2.2-2) is integrated over the velocities ...,
and expressions of the form (C.2.1-3) used for tle @ (f))
operators the terms of (C.2.2-2) may be written, &8s in
section (G.2.1)

j(d/zf) Z > T, /;,N'Q(/a 1) (6.2.2-3)

%@=0

The first term of (C.2.2-8) (¢ =3 = o) vanishes by the
condition (C.2-4) on the function b/ (/2[70) We find from
the relation (C.2-3)

32
D) (_diy A (ial1lp)
j(dﬂf) X (/0'2/70) 7o+z/g/y- 70,‘:1/,(4;'70 701‘:-31?2

iDg ) (:Deld) a; Wy c.2.2-4
j(d”) iZ'O (’9'70) 701»:%/1/ 0+ KT 7O,+2/(/U' ( )
X ;ﬂ(,c)ﬁ (2alll7o)+¢(l)/: (z 141£)

R LA
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In general

ﬁdn?)N_QI“p ¥ 7?&/70) -

_1DRG) D da(iDrRG) AW d'ij a’/v'

T PHIRA R iR ﬁra/(/:f;oﬂ/mfﬁf*i?z

- a g 2 32
(@) pp) [P Gampr+ ik e

c.2.2-5)
23- Ofo) iDg@) ol oy dig (

2D, (4)
+2A’/1f7079f27/2£j fﬁ Y +2Pﬂ/’70 7O,+2A’ﬂf

X ( L (/?,,,q))w{L (%, 70-79)) * [q)g‘)/z '(?‘.?)21/0) +(B-1)g)h, (21'!{;' 170)]

The sum of the terms (C.2.2-3) can be shown to be equal to

32 3
Ruip)&y@ilpp)h (ikip) 1S liilp) Pelp-p)h (ailp)  (c.2.2-6)
and we find from the inverse Laplace transform of (C.2.2-6)

t .
jd-ff(dﬁ)ﬂ @ it Rert-r) Y Tt =
o ' 2

(c.2.2-7)

1.
32
:l ot ( R (11-7) G @ilt-1)h, (ilalT)

32
+ S:-(- (L2 1t-T) B (QIt=7) A, (ééllllf))
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2
C.2.3. The next member of the hierarchy is 5?(/.711') . Once
again this function always appears with the @ (t) operators
in a convolution integral.

1.
( 2
Vo L oit-r)Pait1), tarr) (c.2.3-1)
%) 2

We take a Laplace transform of (C.2.3-1), integrate over the

velocities n—é -+ -/, and use the form (C.2.1-3) for the

operateors to write

~N-2 i t N2
ettt e [t Luie-nPraie-1) o Carr -
o 0 :
(c.2.3-2)

= o7l j dp, f(ahf ) ); Z X (/;zl7o)

The first three terms (xX=0 3= 05 o= I,ﬁ O; 0(=O-,/J’=1) of
(C.2.3-2) are zero by the condition (C.2-7). Foro(= O ,
G232, we find

/324 j (alfﬁ)N-zI b/ A;fszlf)=

_iDp () iDp () J i el ol 1 D () z%m)

VA fi z/lE J {-?F ’,? 7%
70 ”7070 4707(; 70]0 (c. 2 3-3)
@A
(L(&»ﬁﬂ))p < m'/)¢/f)(ﬁz {/?'%}_IP) +/,2 (U/j,&l;o))
7070,4'2/( /U'

+([3- I)(/3-Q)¢(Q)/22m(/z'lo¢;ﬂ7o)
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The terms for ﬁ=0 » X 2 may be obtained from (C.2.3-3)
by interchanging 7q and 70- 70, , X and ﬁ ,. and the
indices 1 and 2. The general term for o, /3 2] 1s not
shown; its form may be determined by the methods discussed
above. When these results are combingd we find

t N-2 , N2
Jatrfte " Rure-r) Paaitr) i tair) =

t () 42 42
= f df[z; (11t-7) (a,ilflt—f)( Py (1i1341T) #h, z'{,[,alf))
(o} ' 2

ya 42 (C.2.3-4)
+'5;(;(I,ilt-7‘),%(aé/'lz‘:r)(/zz (/1RIT) +h, (i) /Q"f))

(1) Y

94
+ 7 (/,z'/q{li‘-'f)% (Qlt'—‘f')( , ?z'al;j'lf) f/?z .(zz'alvi;/lf‘))]

These same methods may be used to extend these results to
N,
other members of the hierarchy of functions 5; 2 /Q) .

C.2.4. The problem of three @ () operators is handled
in much the asme way as was the case of the two operators.
We consider the simplest case of the function 6: M?/.?B) .
This function is in all cases independent of time and the
problem is formulated as

N3

@—)(/lz*)@(alz‘)@(alz‘) ¥ (123) (c.2.4-1)
4 >3 3 o
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We take a Laplace transform and use the convolﬁ’cion theorem
to write (C.2.4-1) as a double convolution integral. Substi-
tute the form (C.2.1-3) for the operators 47? (70) and
integrate over the velocities (N-3) to write

t .
_ 2“ - N-3 /
{at e[ PPt ey “as)-
Q) 4 2 # ©
(C.2.4-2)

(&m)‘J dﬁf dﬁﬁd"’) Z ZZ «,er (’-73)

where the element in velocity space is now (df;}) =dﬂ7;,~ dn'f; .

The first index < 1s assoclated with é?(//?q) s the

second 5 with @(’;”702) and the third & with
'Z

&/{7; (3}70-70,-702) . We have
(@I, e -

fo23)
(ﬁﬂkﬂf}{ﬁ*z?/bf)(]oﬂ PR )

N-3
‘((c/n/') ,OOX (/23)-

ZD‘(/)¢(I) i A:’ 3(/523) N
/szA’Af "f(ﬁfz'ﬁ-ﬂ?)(zozﬁ'z'/fé)(ﬁ-ﬁ-ﬁ*i@ﬂg)
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In general, for o /3, Y #0 , we find

De (P (:) 2D, (3) qﬂrs)
J(C{/U') %r X (/33) ﬂ" /u' ﬁ Pfoﬁﬁ;é%

Yl (c.2.4-3)
33
ﬁj dit u.l..(rf,ﬁy \L(Kzﬂoz)) (L(/%ﬂoﬁﬂ)j Ao(/dd)

L%, ﬂf?/(/)f)(ﬂﬁﬁ’/d’)(fﬂfzﬂ(ﬂf)

The terms (C.2.4-3), when summed, are equal to the product
of three _@ (70) operators. We find, upon taking an

inverse Laplace transform

N-3 N
S RunPrainPioin ¥ as) -

(C.2.4-4)

3,3
=F Uit @(a/t);g(ambo (123)

The extension of these results to the next function
N3
bf (/QB}‘t) is accomplished by combining the abowe
methods with those of section C.2.2. We find a sum of three

terms.
t N-3 N3
jdr f @) lit-7) @alz‘-f) @9 (31t-1) Y (m3iT) =
(o) / 2 3
t 43
=f°o/1“ 5,? (1 12‘-7‘)},‘?2(942‘-7‘)%(312‘-7“)6, (i23)/17)
(c.2.4-5)

¢ 43
+ [t R 127) Sy @iET R GI1A, Casiat)

t 43
*ff‘f?h t7) Blalt-1) Sy (3U1E7)h, (12i)31)
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N3
The reduction of other functions bj; (/QBI‘f) may be
determined by these same methods.

C.2.5. We will find in section C.3 of this appendix that
the above results must be extended to cases for which the
velocity integration 1is over only (N-S) velocities rather
than (N-2) as in sections C.2.1 - C.2.3 and (N-3) as in
section C.2.4. The simplest problem is

S(d/zr) (/Iz‘) (Y' (,) (c.2.5-1)

We take a Laplace transform in time and substitute the form
(C.2.1-3) for the operator Jf?)(/lzo) . The first term is
'}

(c.2.5-2)

{ amr” 70?/ A,,-,; -(7 7 Tog) 52 o)

]Of-l/(/U'

where we have used the result (C.2-1) The set {S-/}
includes all those indices in the set { S} except the

index 1. The second term becomes

. ”
S (47 )“‘5 D00 ¥
tIK S O+ KA
70 70 4 /7/,, (0.2.5_3)
(1)
- ({ﬁsi}¢( )21%(/)90(/) fdﬂf 70*2}?/7‘
4 yaddd KAL
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where we have dropped S terms of C?(x%) . We see from
(C.2.5-1) ana (€.2.5-2) that we are simply producing the
terms of the operator 7".? (/ I7O) multiplied by the quantity
(jﬂs_'u ¢g)) . This indeed is the case, and we find after an

inverse Laplace transform

Y, {s-1}

j(c/nf) mt)b”m = 7f§ﬂq¢> (//r)/y 0 (C.2.5-4)

C.2.6. The next term to be considered is

VS N
j(dnf) Blir) ¥t (c.2.6-1)

The primary difference between (C.2.6-1) and the result
obtained (for S = 1) in Chapter 6 of the text is that there
are now some terms present which vanished earlier. For
instance, the first term of (C.2.6-1) 1s, after a Laplace
transform has been taken

-1}
j(o/ v ”) - {SLL 4 (/14) (c.2.6-2)

+e,1’,qj- /Of? I/q'

These terms vanish 1f we integrate over the velocities in
the set {S-/} > 1n agreement with the result of Chapter 6.

The second term becomes
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J PR, PrRE
iDg () {2 % ( /ra'(l 17)
= —4_1 /llf)) = __l__;.L: .62
]Oﬁ,g./y; . (wﬁ-sﬂ dﬂjﬂ*”ﬂ”j (C.2.6-3)
The n®R

term of the expansion consists of two different
terms

; {} {5} -
2Dg (1) - /7 (12 R G
/ow/( /v' Uﬂ gﬁ{ )fa/gz]ow.(ﬁf (L(K”,’O))

fs) )z (1) gﬂm

+(n-2) # %(U)ZO

- ?..D,r, (2) /)a’/(,tli)
i )% i YRR A porik (L %)

The first group of terms of (C.2.6-4) may be separated into
those which contribute to the second term in the operator
7% (/ /70) (i #1) and one (I.=1) which contributes to the
first term in the operator 5}6(/,2‘ /70) . The second term of
(C.2.6-4) contributes to the second term of the operator
Sg (4 170) . If these results are combined we find, after

an inverse Laplace transform
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{s-}
N-S N/
j(aw-) Lund o = 7o, (/,zIZ)/z i)

(c.2.6-5)
U

£ {ﬁ o)) R (112) 1)

We note in passing that the second term of (C.2.6-5) contains
a summation over the index ? in the set {S '/} . Each term
of thie summation is not symmetric to an 1nterchange of the
velocity /)_/:' with the other velocities in the set {S ‘I}
The proper symmetry is obtained only after the summation
over the index 2 . Farther, each term of the summation

—
vanishes upon an integration over the velocity ,ﬂJ; .

C.2.7. These results may be extended to the next function

Q;MQV) of the hierarchy. Three terms are found in addi-
tion to the one shown in Chapter 6. Two involve a single
sum and the third a double sum over the set {S-/} . The
first term of the operator @( /I;O) is

N/ {s-1} (s
N _ s )A (/um) |
(%) PR ;;;(Uﬂmgﬂ{ 70+2/(ﬁf (¢.2.7-1)
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The second term becomes

{s-3 {s- .
, 2Dz (1) - /: (zl/,m) +/: (plm /)
Z\(ﬂf;sp@)ﬁ*iﬁ"f JO‘I’L{ P+IK G
(c.2.7<2)
{S-1}  {s-0
2D (1) /1 (zl!m)
+£ Z (w,,ngﬁ{w))pﬁ'/?,-/z‘,f fd/l{ iR
m V Y )

Note that if the relations (C.2.7-1) and (C.2.7-2) are inte-
grated over the velocities { S-1}  all terms vanish.

There are three different contributims to the third
term of the expansion of @(/If)}

({5) 21)( (1) C{_. _ 1Dy () /7 (zl/4)+/z (2 P
S P /O" (KA "‘7"*55"" Prikg
{S -1} {5
iTp L iDey) 1
¢fhf)) +;/?‘”JdeJf+?F”p?F”

| 90{/‘){ /Ij ’( iim) + /;j"(:' Im,/))
- (c.2.7-3)
~ PR, (5 1jm) - 11m))

X

{S-1} {S}

3/
iDgw) . by (F14,m) .
‘Ej;[j wtm gﬁbvk:ér A e Z-cﬁgf»

7szkjﬂ{
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The first term of (C.2.7-3) is similar to the, first term

in the expansion of the operator ,Sgl)(/, z/jiio) (see (6.2-29)).
Indeed, the fourth and fifth terms in the expansion of %O (/l)o)
contribute other parts of this gperator. Each tem is
multiplied by the factor iﬂa (f(qf) and is symmetric in
the velocities in the set {S-/} . The second term of
(C.2.7-3) and the firat term of (C.2.7-2) are the first two
elements in the expansion of the operator S,?; (/,2'/70) . These
terms all have one index in the set {S'/} which 1is not
symmetric to interchange with the other indices in that set.
Finally, the last terms of (C.2.7-2) and (C.2.7-3), when
combined with (C.2.7-1) form the first three elements in the
expansion of 75(1[70) . Each member has two asymmetric
indices in the set {S-l} . These results are combined to

write

N-S N/
J(d/z‘i) Ruie) § () -

!

()

({ﬂs‘¢lw))5 (/zJIt)(ﬁ (1//;)+/7 h;/))

{13 {s-0 (C.2.7-4)

*+ ; ( ZZ; qﬁ(w))s;'(l,z‘l t)(hj’/(z'l/,i) J;j;iu»,/))

{s-0 s

*22(77 sﬂfw)) (1A, (igm)

£ tm
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The extension of these results to multiple operators and

N2 N3
the functions é (/2 and szz. (/123) is accomplished
by the methods discussed in the first parts of this section.

N Y
C.3 Source of the Functions b{, ({v}) .

We consider in this sectlon the source of the functions
NYD
6’: ‘({v}) which have been simply defined and then used in
Section 2 of this appendix. The initial value functions
NV ND
f ({v}|t=0) are all functions of the form b: ({v})
since, when we integrate over the velocities {N—S} we
obtain a single term which i3 completely symmetric in the
velocities {5-U} . The second term in the solution (5.4-4)

for f;M’(II‘t') is

t {n-1} N3
e Rure-n# Y L(J)Eu r)@mr @ng), (ijit=c)  (c.3-1)
5 % 7Y 37 REL T
, L 3 N3
We have shown in Chapter 5 that - N MJZ L )@.E U ,f)]fz‘_lzg.(,g,ﬁo)

is a function of the form b;/ (/Ir) .+ A simple extension

of these arguments can be used to show that the factor

{N-2}

Z Y Lap Pmr)@(a:r)@mf)@g/r)/f _,(l.?ylt"o) (c.3-2)

in the second term of the solution for 7[/_:7/_2 (12) t) is
a function of the form X (1a) . '

The third term in the solution for f (1]t) contains
the following factor

de,v ZUJ’@ </J:f1*),\,ZZl/_um)? agxmlr),{ (Ig!mlf‘o) (c.3-3)
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In order to determine the functional form of (C.3-3) we
integrate over the velocities {N—S} to obtain

ek
fdf_f(dnf) L(zs#)@ ,?(/zS*/Iff')NZ ZL(IM)P(I:S;IJIAII‘)[(I{SS;IMIFO) (Cc.3-4)

Lem

{N‘-_Sj
The factor v Z p L(Im}&%)zmwlmlf )]_C (I)S*/jm’t-o) is a function of

the form ™ "'3 (17S+1) . To 111ustrate we integrate the
former function over the velocities AN-N (where /2>S+ ).
If both / and m are in the set {AN-n} then the term will
vanish. The only non-zero terms are those for which the
index { 18 in the set {n;—3} . The sum over the index m
will contribute N -3 terms for /m in the set {n-3} and
N-n+3 terms for m 1in the set {N-13}. If we require that

N<<N the contribution of the first group of terms is
very small, and we find (see alsoc (6.2-5) for a similar

argument )

J‘(d_,)N'n_l_f‘dBL! Ps 3 :£M5, .. i~
m N L (fm) A’}-I?:,,(I:IIMH)&"En(lylm’tr-o) =
{n-3} n+l,5 (c.3-5)
= Zjd/u' L(¢m) glz‘(glmh‘ ){ (/Jlm IT=0)

which we may rewrite as

{n-3}
~ Z (Jdll.;l L (Im)P- (/ylmlf )é E,,UJJM [t=0) %:‘a}gﬂ(ar)) (c.3-6)

3
which 1s a function of the form Jf' (/Q‘) . The results . °
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of sections C.2.4 and C.2.6 can be used to establish the
following

3
’ o (lisutrst) fv L T?L Mm)aD (/esudmlt ))[. U?S*Mm It=0) =

d .e<m.
A

{s-3
= ( If¢(w»{ jdflg (L 1r-r") —P (2 s#Ir-T) JU' L (/m)zD (iS4 Lmir, (/191.(0'2 It=0)
° ' Ko

df J(dm')N ® o

erff; o NPT oL
+o A 2 (4:211‘#)545### Jd%[(lm)?ﬂ/_‘.n(/l Seldmlr) z_&(/zsﬂzmlm)

ldf .S: (S441r-r )P T )jdv' L(s4m )? » (iSHAm ) )]C (/15*/!/71)1‘-0)}

(c.3-7)
(5-3 {s 3} =5
70(“’) de /(éls"'ff ?)(Ol/?}; / ’}’m;P,. \llaqa('fllfﬂ“? 7 (ios+1dmit -O)

The result (C.3-7) when used in (C.3-4) indicates that (c 3-4)
is made up of two types of terms, some of the form A "an )

and others of the form /1 (11 .,/) We find

(64 Wy ¢ NS
gﬁ (d/U) L (7 5+1) @- (1iS+Ir1) = ;:; L (Um) @f” sidmlr) Zl?:' 1__‘."(/2'5+L(m It=0)=
(c.3-8)
{s-3 {s-13

Z /2 (/Iz) *ZZ‘AS(/MJ}

]
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where

S,/ {53 .
A, ) = (1 ) |l LG 5w % (¢.3-9)

[ 1\, < 5 55
idf 5;,, (I,:Ir-r')&(: sutr') ML(fm)gz'(ns-um I7) ;g g lisHmlt-o)

! [-s.

T ' : L
I . nR IO e GBI
X 1*Ldf %(},ﬂ/ﬁf)gdlsulﬂf')jdag, lem);_g_&(/, Semlr )/;%_Z"(/, Siidm|t=p)

PTIUTN (FRRN S
*gf%f S T B Ui lrt) fdfwn L&im)2. s (isH.tmit )75; [ liseamltec)

-

N (Ts]i} W 1 A i
10:9) = VA + (swit 1) dir isitm|t + i .
L, (11:9) wﬂqD(ur) %,L(fsjgf%x; 1) %Lam);l?&(/;s.xm;f)é%swlmlt o)

We see that quantities with two unsymmetric indices arise in
the third term of the solution for 7§ (/1t) - Similarly,
terms with four unsymmetric indices will arise in the fourth
term of this solution, and so on. We have by no means
exhausted the combinations of operators and functions that
arise in the rednction of the solutions for the single and
two-particle distribution functions. However, all the terms
can be evaluated by a straightforward application of the

methods presented and discussed above.
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APPENDIX D

LAPLACE CONVOLUTION INTEGRALS

We consider in this Appendix the evaluation of some of
the Laplace convolution integrals discussed in Chapter 7.
The algebraic identity (D-1) is used to simplify the form of

many of the terms.

\JA(IO*: /(xzr)(ﬁwm,eml;sar)
(D-1)
1 ( ( dw ( dt )
p-(,o;rar- J/O-‘v*;za;?\ﬁP/)f )/Orzmz/'/

As a specific example note that if the integrand of (D-1)
contains the function Z‘JQ(-‘( ) D(1)  then we may write

j DO PO ERp) - E(F 02+ 9%)
/] (]ole(lf)éo-fgx fZI(JU') f - (70(_. ,.&a%) (D=2)

We note that there 1s no pole at the polnt O =fQ + QU

on the right-hand side of (D-2). However, it is convenient
to treat each term on the right-hand side of (D-2) separately,
in which case each has a pole at this point. We ave at
liberty to choose on which side of the contour C this pole 1s
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to lie, provided we are consistent in our choice. The
relation (D-1) is the only one needed to reduce the terms
to forms where they can be evaluated by a simple application
of the method of residues.

The following three terms from equation ( 7.3-13) for
the two-particle correlation function are to be considered

/ Sv : C
rﬂzld / { kj(/,ilﬂ(', *fl*iz*‘?x’*‘gbfz"?‘).]a?:(j) #1)”
"é%‘gbO)éaic%lyqirQ%@Jﬁ@?IOC%”Gu

* B Iy g w2 22 )i g+ 2% ) Ret) Crt1)

(D-3)
“ Sk, (2,4170) g (0) Cpu Q)

* (55;}) *.53‘/;) 5,;7(/,51705 #0728y + g0 ) Frg (1) Cr (1)
« S8 (3,21 P) R (01Gn (2)

With a repeated application of the relation (D-1) one can
show that these terms, referred to as the first, second and
third terms, respectively, reduce to the following forms.
FIRST TERM:

| Bz pero e p) { 1
™ o, e (o~Z 0 * 203+ JE; )

, 1 De@ P [E@_'ﬂ +Z§g(=?‘¢%+9372‘”)]} x

PRr ) | prifills  fpefpur iR

(D-4)

Dy () C () R Dy (@ G ) Ry,
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SECOND TERM:

4 _E—-é(alp){g i
2 PP (B figrasymatpu-ppr B ANy v R

D20 90 Bl g ratp-atnp) Bl %, ooy
723 | 7% 7, * W + w043 RE ﬂ?‘*%fe' +iR}

KDpp () Gor 10 Ry () Goul@) Ry,

THIRD TERM:

) P(, %A%, 4—.'2%/*&?(-'-41 ) B (52’70)
-z *3%: 2% ,?”70 f) 7%'

(% 2%

(D-6)
. & - o)
* (D5 0) Cou (R Dy (2) Cput2) By

We have made use of the definitions of the operators 'Z?’(/ I,O)
-~ /

and t t
'@: ( /[70) o write

j i Dg () P6) = D-T7)
(o) = 5 72(,;70) (
The contour C passes to the right of the poles of _l?z( .'4‘170)
and to the left of the poles of 72 (/] 0y + L+ 2% +2%pus0) -
Three new poles have been introduced into the p-plane by the
use of the relations (Drl) and (D-2). We choose to put the
contour C to the right of the new poles at =/, and

72 =R, +°?b/%. and to the left of the new pole at
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7o=7o/?; fga%/ *Qb’% " . The simplest part of each term
has been considered in Chapter 7 of the text. Thus, if we

take the first part of the operators /3(|0s+ap 2 2% v~0)
and '%(Q}’o) (see (D-T)) and the first terms within the
brackets { }  of (DP-4) and (D-5) we find

. a g Lt d
(2) D) G () Ry, D, () CGoe )R, )
(% 106,253 +25a~0# R} )y 18, 25)

nf 1 . 1
CAP DR )y Ve 1o)X w2tpiy) (P78)

b
ke 2] 198, 1+ 2+ 250 ~0)

The inversion contour is closed to the left. The integrand
vanishes at least as ( 1/703 ) in the 1limit of large L so
that the only contributions to the integral come from the
poles L= -2'/?2-272’ and 7O=7O;2 . The inverse
Laplace transform of (D-8) becomes
() D) Cr (Y7o D @) Cor ) B, )
(70, P> @1 v agueif A i By

1
X
{Qxéu (f,?; *Q?f, "'Qéa*‘j;—éz'j—y:' )(7%_ *QY,'(‘” ’27;‘/&5)
1 (p-9)
+ )
2 xéz (70,;: *Qb;-‘*/ *Qa%u*l‘e '/l?' ) ( 702: *93;?/*2'/(-1.‘/?, )

*(_/. +* L 1
aaj(l Qb;?// (QX;‘(‘I +Qa%,,)(704-,;+93(,;""33{2‘”*’7€’%?)
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which reduces after some algebraic manipulation to

() D, 0) Cpr 15 Dey(@) Ciowl@) o,
(2% ,)(Qb’?a)(ﬁ,g +Jb’,'?/ * 2/?/2!')(7047 +;)a‘..,, +iRAT,)

(D-10)

The next group of terms to be combined are those in
(D=4)-(D=6) which come from the second part of the operator
7%( /1 % "X, + %1 + Qfpu = ;o) and the first part of the

operator % (Q I]O) . These terms are grouped in the following
way

: D q?m o( _/D (1110 +£9% + Wt + Qg -70)
T 4P| o ofor,+ 2y - poriR
j P
[ 2 (12 2% 2PN o R X 20 )
- 7
2521 (;0+¢ K% X008 Yoor #20ge 0)

+{=L +:5 )~ 1 -
(Qb’i: &bfza) ( 701»;'/? f;é)(f)-m X]O,? * 2% 12 ,,70)] (D+11)
72 (1108 +2%+) }
" P (peiRoi A L S )

x (l)'D,;-(/) Cz/m%g D,y @) CZ”(Q)PF
The poles of 73(/} *797*932'*33;?" ]o) lie to the right of the

contour C. The inversion contour for the first three terms

of (D-11) is therefore closed to the left. The integrand of
(Dr11) vanishes along the contour at infinity so that the
only contributions to the first three terms of (D-ll) come
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from the poles at 7O=-2'/_(;'/?7; » 7O=7O,?2- and 7o=70,72+o’257-(w .
These terms become after some algebralc reduction

3 =~ Aw ~
(2) D VPOYR (1198 *2%) Dy ) G 1) R Dy, (@ Cpu(2) Ry,

(D-12)
(@5 X4 107 25380 2050 )

‘The fourth term of (D-11) is evaluated by closing the inversion
‘ contour to the right. All the poles of this term lie to the
left of the contour C, and there are none inside the curve
when ulosed to the right. This term vanishes, and (D-12) 1s
the complete contributiem of the terms in (D-11).
The next group of terms are those which come from the
first part of the operator /;(/|Qp+pg + 2% +2% ~1) and
the second part of the operator 7%(.2/70) « These terms are

Dol { ?zfi'f’)[ Z
L | ok #; W 1372 Qg iR N3 1203, +2.22) (R * e 10)
7

*5;:?' ( - g+, »«aa',?,}azg,.-,ou‘/z/z? Now,+ 2%+ 2%+ 30)
(p-13)

/ + / e -
+(<Q¥<" 93’}?#)(70-’%)(]% qu,z,f,?é, ,‘,75,’?,,-704,(';',03})(7%,9%,, +Qa"?, P)
4 B (2l05+2%2) } .
‘QXH " (f%' *PI'?;*QX;Z! *,?Xz- "70 +, /?,/2-2' Xﬂyz be;z: *Qéu ‘f)Xf)?OA; -.?&.)ﬁ. rQK"(., +] Iz/i; )

x (VD) Cr () g Dy (@) Cnl@) R,
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The first three terms of (D-13) may be combined with the

result

L f De fﬂraf/% (Q-p) iDpﬁ[’zr(d?z I D @) (g (a)ﬁz
T}, P 36, (1R N 0N 2N » Wt KA (D-14)

The poles of 7;% (2] p0) lie to the left of the contour C
so that the first three terms of (D-13) are evaluated by
closing the Laplace contour to the right. Once again the
integrand vahishes along the contour at infinity. There are
no poles inside the contour so that the integral (D-14) 1is
zero. The only contribution to (D-13) comes from the fourth
term. The inversion contour 1s closed to the left. The
oniy pole inside the contour is the one at /O=/,0A;; +Qb;-gu
and we find

Z:D,[z; Q) ¢( Q)é Q 170,‘-:;*,2&.) lDA—’: (/)['21 ( l)fé-(; 1%(3) Cz; (Q)ﬁ;ﬁ (D-15)
(28 X102+ T AE N [0 # g )

The last group of terms consists of those which come
from the second part of the two operators‘Zg(/qu7nggé%ﬁz%.7o)
and 'E?(Qbo) . We rearrange the order of (D-4)-(D-6)
=1
slightly to write these terms in the following way.
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1& tll¢7(il ¢, {2) ,\fﬂl.[) d
Qe J

o Bl 2% ) B (-7/70)[ | 1
1% P Wt Ly a~PiR Ay PR || 2 (0000 20N 010,260

_ 1 o 1
A p———C A A s -;o>]

(D-16)
T (1] 19+ 2 )736 (21,0)

;zx-, (P-PRNO X 08+ e 1N g +2%es #6 K, )

T (110 0 + 200 4 2% 0-P) P (2108, #2% %)
" Qe (P W R PR N e e 015 e g e )|

%i D (1 Gy VR, 2 D, () G (.z)‘/"t’,a

The inverse Laplace transform of the {irst group of terms
(those within the bratkets [ | ) is complicated by the
presence of the poles of 7/.(21(;2;70) on the left-hand side of
the contour C and the poles of E(/‘ﬂ;fﬁ%i{)éﬂ/*;zé‘up) on the
right-hand side of C. We are unable to evaluate each term
conveniently by closing the contour either to the left of to
the right. However, these terms vanish when added together
and do not contribute to the integral. The next 6o last
term of (D-16) is evaluated by closing the contour to the
right. There are no poles insfde the contour, and this term
contributes nothing. The last term may be evaluated by
closing the contour to the left. The only pole inside the
contour 1s the one at O =7%fo-~0 , and we find
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) ~ . » ~
() D 0) PO RIPR) B (42 ) B, QU *00) D ) o9 R Do 2) o) R (D=17)
(3%, JR%) (107 3% 1+i B )(10p, #2051 R

If the contributions (P-10), (D-12), (P-15) and (D=17) are
added together the convolution integral (D-3) may be written
inithe.following way

<Q_aé-;<-—, 75(‘? (1 ’,Og *Qb/z/)l% (1) (%, (I)?A;:X@;—" @(&)&f&é,)%(&)gdﬂ?)kz) (p=18)

which is exactly cancelled by the term

SA;, (nélpg fab,’?,)ﬁ% (i) (/'?,(/) % (9.0 I, +,2%,,)7\%(£) Cz,, (@) (D=19)

from the product ,5;0)Z§‘Q) of two single particle functions.
¢ 2
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TABLE I

SUMMARY OF OPERATORS

A) Explicit form of the operators

7 z.‘.D-'(l)WII) LO*I/M/’
;sz'/?-"; (pﬁ,«w)goe;o)

Rulp) =

. A ¢) oy
Sptiile) = ( (DR iDgl) ¢’wfd'1f;<%=> iR (F—R)

+HRA 904-2/(”) E(R 70) EKX, 70)
Dz (1)
C'“,) iio) = Z.DK(I) z_D;‘mqﬂn)fd”f;o»ﬁmr\
~ W 1P KA (p+iRA) E(R L)
+2 /)f’ J;Oﬁ/(ﬂ/' (/_(3 —’f)
(K,,O) E(RL) \K—K
D (£)
Q) ol SR
5(/2/;,1)70) 5 (nljl,o) 5;{’:;’)?’” (K,—K)
In general:
() ” i) olip L2 z?‘m)

(%,£)
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B) The operators satisfy the following equations

(s +Ra-iDyogufdz) Buit) = o
Z?DMT:O) =1
(Ea? + (R4} D (’)(ﬁ")jdﬂ?)b}(/,ilt) =fa'/z’2. FG1tRD; (1)
Sy (Lilt-0) = O
(Sa%‘ + I RA <Dy 0o fdﬂ'f )5,;)(4 i141t) =de§ S G t) Dty

a) ) .
) (/,zwt=o)=o

In general

(n)

(35 +R3-De 0 Poofdm) S, 131, )=

(n)
e (/;?‘}?‘s" ’Jminlt=0) =0
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